• Matter and Radiation at Extremes
  • Vol. 3, Issue 3, 110 (2018)
J. Nikl1、2, M. Holec3, M. Zeman2, M. Kucharík2, J. Limpouch2, and S. Weber1、*
Author Affiliations
  • 1ELI-Beamlines, Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague, Czech Republic
  • 2Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech Republic
  • 3Centre Lasers Intenses et Applications, Universite de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence, France
  • show less
    DOI: 10.1016/j.mre.2018.03.001 Cite this Article
    J. Nikl, M. Holec, M. Zeman, M. Kucharík, J. Limpouch, S. Weber. Macroscopic laser-plasma interaction under strong non-local transport conditions for coupled matter and radiation[J]. Matter and Radiation at Extremes, 2018, 3(3): 110 Copy Citation Text show less
    References

    [1] M. Kaluza, J. Schreiber, M.I.K. Santala, G.D. Tsakiris, K. Eidmann, et al., Influence of the laser prepulse on proton acceleration in thin-foil experiments, Phys. Rev. Lett. 93 (2004) 045003.

    [2] D. Batani, R. Jafer, M. Veltcheva, R. Dezulian, O. Lundh, et al., Effects of laser prepulses on laser-induced proton generation, N. J. Phys. 12 (4) (2010) 045018.

    [3] J. Limpouch, O. Klimo, J. Psikal, J. Proska, F. Novotny, et al., Efficient ion beam generation in laser interactions with micro-structured targets, EPJ Web Conf. 59 (2013) 17011.

    [4] A.G. MacPhee, L. Divol, A.J. Kemp, K.U. Akli, F.N. Beg, et al., Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion, Phys. Rev. Lett. 104 (2010) 055002.

    [5] S.D. Baton, M. Koenig, J. Fuchs, A. Benuzzi-Mounaix, P. Guillou, et al., Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets, Phys. Plasma. 15 (4) (2008) 042706.

    [6] O. Klimo, J. Limpouch, N. Zhavoronkov, Numerical and experimental studies of K-a emission from femtosecond-laser-irradiated foil targets, J. Phys. IV France 133 (2006) 1181-1183.

    [7] A. Zhidkov, A. Sasaki, T. Utsumi, I. Fukumoto, T. Tajima, et al., Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids, Phys. Rev. E 62 (2000) 7232-7240.

    [8] M. Holec, J. Nikl, M. Vranic, S. Weber, The effect of pre-plasma formation undernonlocal transport conditions for ultrarelativisticlaserplasma interaction, Plasma Phys. Control. Fusion 60 (2018), 044019.

    [9] M. Holec, Numerical Modeling of Nonlocal Energy Transport in Laserheated Plasmas (Doctoral thesis), Czech Technical University in Prague, 2016, http://hdl.handle.net/10467/68302.

    [10] J. Nikl, Some Aspects of Numerical Methods for Laser Plasma Hydrodynamics (Master's thesis), Czech Technical University in Prague, 2017.

    [11] M. Holec, J. Limpouch, R. Liska, S. Weber, High-order discontinuous Galerkin nonlocal transport and energy equations scheme for radiation hydrodynamics, Int. J. Numer. Meth. Fluid. 83 (2016) 779-797.

    [12] M. Holec, J. Nikl, S. Weber, Nonlocal transport hydrodynamic model for laser heated plasmas, Phys. Plasmas 25 (2018), 032704.

    [13] V. Silin, Theory of nonlocal transport in laser produced plasmas, Physica Scripta T 63 (1996) 148.

    [14] J. Luciani, P. Mora, J. Virmont, Nonlocal heat transport due to steep temperature gradients, Phys. Rev. Lett. 51 (1983) 1664.

    [15] E. Epperlein, Kinetic theory of laser filamentation in plasmas, Phys. Rev. Lett. 65 (1990) 2145.

    [16] E. Epperlein, R. Short, Nonlocal heat transport effects on the filamentation of light in plasmas, Phys. Fluids B 4 (1992) 2211.

    [17] M. Prasad, D. Kershaw, Nonviability of some nonlocal electron heat transport modeling, Phys. Fluids B 1 (1989) 2430.

    [18] M. Prasad, D. Kershaw, Stable solutions of nonlocal electron heat transport equations, Phys. Fluids B 3 (1991) 3087.

    [19] G.P. Schurtz, P.D. Nicola , M. Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes, Phys. Plasma. 7 (10) (2000) 4238.

    [20] V.N. Goncharov, O.V. Gotchev, E. Vianello, T.R. Boehly, J.P. Knauer, et al., Early stage of implosion in inertial confinement fusion: shock timing and perturbation evolution, Phys. Plasma. 13 (1) (2006) 1-28.

    [21] S. Chapman, T.G. Cowling, Mathematical Theory of Nonuniform Gases, Cambridge University Press, Cambridge, 1952.

    [22] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, et al., The RAGE radiation-hydrodynamic code, Comput. Sci. Discov. 1 (2008) 015005.

    [23] N.J. Turner, J.M. Stone, A module for radiation hydrodynamic calculations with ZEUS-2D using flux-limited diffusion, Astrophys. J. Suppl. 135 (1) (2001) 30.

    [24] C. Levermore, Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf. 31 (2) (1984) 149-160.

    [25] G.L. Olson, L.H. Auer, M.L. Hall, Diffusion, P1, and other approximate forms of radiation transport, J. Quant. Spectrosc. Radiat. Transf. 64 (6) (2000) 619-634.

    [26] B.E. Freeman, L.E. Hauser, J.T. Palmer, S. Pickard, G.M. Simmons, et al., Tech. Rep. 2135, DASA, The VERA Code: A One Dimensional Radiation Hydrodynamics Code, vol. I, Systems, Science, and Software, Inc, 1968. La Jolla.

    [27] D.S. Kershaw, Flux Limiting Nature's Own Way, Tech. Rep. UCRL- 78378, Lawrence Livermore National Laboratory, 1976.

    [28] B.G. Carlson, Solution of the Transport Equation by Sn Approximations, Tech. Rep. LA-1599, Los Alamos Scientific Laboratory, 1953.

    [29] G.C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, Oxford, 1973.

    [30] M. Klassen, R. Kuiper, R.E. Pudritz, T. Peters, R. Banerjee, et al., A general hybrid radiation transport scheme for star formation simulations on an adaptive grid, Astrophys. J. 797 (1) (2014) 4.

    [31] E. Caramana, D. Burton, M. Shashkov, P. Whalen, The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys. 146 (1) (1998) 227-262.

    [32] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral onecomponent systems, Phys. Rev. 94 (3) (1954) 511-525.

    [33] W. Manheimer, D. Colombant, V. Goncharov, The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory, Phys. Plasma. 15 (8) (2008) 1-10.

    [34] Y.V. Afanasev, N.N. Demchenko, O.N. Krokhin, V.B. Rosanov, Absorption and reflection of laser radiation by a dispersing high-temperature plasma, Sov. Phys. JETP 45 (1977) 90.

    [35] J. Velechovsky′, Modelov_aní absorpce laserov_eho z_a_rení v plazmatu, Bachelor Project, Czech Technical University in Prague, 2009.

    [36] T. Kapin, M. Kucha_rík, J. Limpouch, R. Liska, Hydrodynamic simulations of laser interactions with low-density foams, Czech. J. Phys. 56 (2006) B493-B499.

    [37] M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1999.

    [38] C.E. Shannon, Communication in the presence of noise, in: Proceedings of the IRE 37(1), 1949, pp. 10-21.

    [39] T.J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in: D. Kr€oner, M. Ohlberger, C. Rohde (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, vol. 1999, Springer, Berlin, Freiburg/Littenweiler, October 20e24, 1997, pp. 195e285.

    [40] K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Hu¨ ller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter, Phys. Rev. E 62 (2000) 1202.

    [41] S.P. Regan, R. Epstein, V.N. Goncharov, I.V. Igumenshchev, D. Li, et al., Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusion, Phys. Plasma. 14 (5) (2007) 056305.

    [42] L. Spitzer Jr., R. H€arm, Transport phenomena in a completely ionized gas, Phys. Rev. 89 (1953) 977.

    [43] Y. Lee, R. More, An electron conductivity model for dense plasmas, Phys. Fluids 27 (1984) 1273.

    [44] N. Ashcroft, N. Mermin, Solid State Physics, Saunders College Publisher, USA, 1976.

    [45] H. Milchberg, R. Freeman, S. Davey, Reflectivity of a simple metal from room temperature to 106 K, Phys. Rev. Lett. 61 (1988) 2364.

    [46] P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Phys. Rev. B 6 (12) (1972) 4370.

    [47] G. Tsakiris, K. Eidmann, An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas, J. Quant. Spectrosc. Radiat. Transf. 38 (5) (1987) 353-368.

    [48] N. Vaytet, M. Gonz_alez, E. Audit, G. Chabrier, The influence of frequency-dependent radiative transfer on the structures of radiative shocks, J. Quant. Spectrosc. Radiat. Transf. 125 (2013) 105e122.

    [49] D. Mihalas, B. Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, New York, 1985.

    [50] J.J. Honrubia, J.M. Aragon_es, Finite element method for charged-particle calculations, Nucl. Sci. Eng. 93 (4) (1986) 386-402.

    [51] Y. Zeldovich, Y. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Dover Publications, New York, 2002.

    [52] C.D. Levermore, G.C. Pomraning, A flux-limited diffusion theory, Astrophys. J. 248 (1981) 321.

    [53] G.N. Minerbo, Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transf. 20 (1978) 541.

    [54] M. Shashkov, S. Steinberg, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys. 129 (2) (1996) 383-405.

    [55] E. Livne, A. Glasner, A finite difference scheme for the heat conduction equation, J. Comput. Phys. 66 (1) (1985) 59-66.

    [56] D.A. Knoll, W.J. Rider, G.L. Olson, An efficient nonlinear solution method for non-equilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transf. 63 (1) (1999) 15-29.

    [57] D.A. Knoll, W.J. Rider, G.L. Olson, Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transf. 70 (1) (2001) 25-36.

    [58] E. Epperlein, R. Short, A practical nonlocal model for electron heat transport in laser plasmas, Phys. Fluids B 3 (1991) 3092.

    [59] T. Group, SESAME: Report on the Los Alamos Equation-of-state Library, Tech. Rep. LALP-83-4, Los Alamos National Laboratory, Los Alamos, 1983.

    [60] S. Lyon, J. Johnson, SESAME: The Los Alamos National Laboratory Equation of State Database, Tech. Rep. LA-UR-92-3407, Los Alamos National Laboratory, Los Alamos, 1992.

    [61] J.D. Huba, Tech. Rep., NRL: Plasma Formulary, vol. 20375, Naval Research Laboratory, Washington, DC, 2013.

    [62] W.S.M. Werner, Electron transport in solids for quantitative surface analysis, Surf. Interface Anal. 31 (3) (2001) 141-176.

    [63] Extreme Light Infrastructure. URL http://www.eli-laser.eu.

    [64] Extreme Light Infrastructure Beamlines. URL http://www.eli-beams.eu.

    [65] S.Weber, S. Bechet, S. Borneis, L. Brabec, M. Bu_cka, et al., P3: an installation for high-energy density plasma physics and ultra-high intensity lasermatter interaction at ELI-Beamlines,Matter Radiat. Extremes 2 (2017) 149.

    [66] B. Rus, P. Bakule, D. Kramer, J. Naylon, J. Thoma, et al., ELI-beamlines: development of next generation short-pulse laser systems, Proc. SPIE 9515 (2015) 9515OF.

    [67] J. Sanz, R. Betti, V. Smalyuk, M. Olazabal-Loum_e, V. Drean, et al., Radiation hydrodynamic theory of double ablation fronts in direct-drive inertial confinement fusion, Phys. Plasma. 16 (2009) 082704.

    [68] P. Mora, Theoretical model of absorption of laser light by a plasma, Phys. Fluids 25 (6) (1982) 1051.

    [69] A. Caruso, R. Gratton, Some properties of the plasmas produced by irradiating light solids by laser pulses, Plasma Phys. 10 (9) (1968) 867-877.

    [70] R. Sigel, K. Eidmann, F. Lavarenne, R. Schmalz, Conversion of laser light into soft X rays. Part 1: dimensional analysis, Phys. Fluids B 2 (1990) 199.

    [71] A. Brantov, V. Bychenkov, Nonlocal transport in hot plasmas. Part I, Plasma Phys. Rep. 39 (2013) 698.

    [72] D.G. Colombant, W.M. Manheimer, M. Busquet, Test of models for electron transport in laser produced plasmas, Phys. Plasma. 12 (7) (2005) 072702.

    [73] R. Fabbro, C. Max, E. Fabre, Planar laser-driven ablation: effect of inhibited electron thermal conduction, Phys. Fluids 28 (5) (1985) 1463.

    [74] V. Drean, M. Olazabal-Loum_e, J. Sanz, V. Tikhonchuk, Dynamics and stability of radiation-driven double ablation front structures, Phys. Plasma. 17 (2010) 122701.

    [75] D. Batani, L. Antonelli, G. Folpini, Y. Maheut, L. Giuffrida, et al., Generation of high pressure shocks relevant to the shock-ignition intensity regime, Phys. Plasma. 21 (2014) 032710.

    [76] K. Falk, M. Holec, C.J. Fontes, C.L. Fryer, C.W. Greeff, et al., Measurement of preheat due to nonlocal electron transport in warm dense matter, Phys. Rev. Lett. 120 (2018), 025002.

    [77] T. Esirkepov, J. Koga, A. Sunahara, T. Morita, M. Nishikino, et al., Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets, Nucl. Instrum. Meth. A 745 (2014) 150.

    J. Nikl, M. Holec, M. Zeman, M. Kucharík, J. Limpouch, S. Weber. Macroscopic laser-plasma interaction under strong non-local transport conditions for coupled matter and radiation[J]. Matter and Radiation at Extremes, 2018, 3(3): 110
    Download Citation