• Journal of the Chinese Ceramic Society
  • Vol. 49, Issue 12, 2676 (2021)
JIAN Jialing1,2, YE Yuting1,2, LI Junying3, SHI Yilin1,2..., SUN Chunlei1,2, MA Hui3, WU Jianghong1,2, LUO Ye1,2, LIN Hongtao3 and LI Lan1,2,*|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    JIAN Jialing, YE Yuting, LI Junying, SHI Yilin, SUN Chunlei, MA Hui, WU Jianghong, LUO Ye, LIN Hongtao, LI Lan. Recent Progress of Micro/Nano Photonic Devices Based on Chalcogenide Glasses[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2676 Copy Citation Text show less
    References

    [3] ZHANG X, LIU Y, LEE S T, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting[J]. Energy Environ Sci, 2014, 7(4): 1409-1419.

    [4] WU C, ARJU N, KELP G, et al. Spectrally selective chiral silicon metasurfaces based on infrared fano resonances[J]. Nat Commun, 2014, 5(1): 3892.

    [5] MOSS D J, MORANDOTTI R, GAETA A L, et al. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics[J]. Nat Photon, 2013, 7(8): 597-607.

    [6] NEO R, SCHROEDER J, PAQUOT Y, et al. Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide[J]. Opt Express, 2013, 21(7): 7926-7933.

    [7] SCHOLTZ L U, LADANYI L, MULLEROVA J. Numerically analyzed spectral and temporal management of all-optical switching based on chalcogenide bistable fiber bragg gratings[J]. Opt Quant Electron, 2017, 49(2): 48.

    [8] HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator [J]. Nature, 2018, 556(7702): 483-486.

    [9] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792.

    [10] CAI W S, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials[J]. Nat Photonics, 2007, 1(4): 224-227.

    [11] SIMPSON R E, FONS P, KOLOBOV A V, et al. Interfacial phase-change memory[J]. Nat Nanotechnol, 2011, 6(8): 501-505.

    [12] ORAVA J, GREER A L, GHOLIPOUR B, et al. Ultra-fast calorimetry study of Ge2Sb2Te5 crystallization between dielectric layers [J]. Appl Phys Lett, 2012, 101(9): 091906.

    [13] CHILES J, FATHPOUR S. Silicon photonics beyond silicon-on- insulator[J]. J Optics, 2017, 19(5): 13.

    [14] SEDDON A B. Chalcogenide glass-a review of their preparation, properties and application [J]. J Non Cryst Solids, 1995, 184: 44-50.

    [15] FENG X, MAIRAJ A K, HEWAK D W, et al. Nonsilica glasses for holey fibers[J]. J Lightwave Technol, 2005, 23(6): 2046.

    [16] ZHANG Y, CHOU J B, LI J, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nat Commun, 2019, 10(1): 4279.

    [17] YUAN W. 2-10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber[J]. Laser Phys Lett, 2013, 10(9): 095107.

    [18] SHENG X, BOWER C A, BONAFEDE S, et al. Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules[J]. Nat Mater, 2014, 13(6): 593-598.

    [19] MADDEN S J, CHOI D Y, BULLA D A, et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration[J]. Opt Express, 2007, 15(22): 14414-14421.

    [20] DUCHESNE D, FERRERA M, RAZZARI L, et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides[J]. Opt Express, 2009, 17(3): 1865-1870.

    [21] FU L B, ROCHETTE M, TA'EED V G, et al. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber[J]. Opt Express, 2005, 13: 7637-7644.

    [22] RUAN Y, LI W, JARVIS R, et al. Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching [J]. Opt Express, 2004, 12(21): 5140-5145.

    [23] ASOBE M, KANAMORI T, NAGANUMA K, et al. Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers [J]. J Appl Phys, 1995, 77(11): 5518-5523.

    [24] LIU Q, RAMIREZ J M, VAKARIN V, et al. On-chip bragg grating waveguides and fabry-perot resonators for long-wave infrared operation up to 8. 4 um[J]. Opt Express, 2018, 26(26): 34366-34372.

    [25] LONG M, GAO A, WANG P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Sci Adv, 2017, 3(6): 1700589.

    [26] MASSELIN P, BYCHKOV E, LE C. Ultrafast laser inscription of high-performance mid-infrared waveguides in chalcogenide glass[J]. IEEE Photon Technol Lett, 2018, 30(24): 2123-2126.

    [27] LIU B, KOEPF M, ABBAS A N, et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties[J]. Adv Mater, 2015, 27(30): 4423-4429.

    [28] LIU Q K, RAMIREZ J M, VAKARIN V, et al. Mid-infrared sensing between 5. 2 and 6. 6 um wavelengths using Ge-rich Sige waveguides invited[J]. Opt Mater Express, 2018, 8(5): 1305-1312.

    [29] MARIA MARGARIT J, VERGARA G, VILLAMAYOR V, et al. A 2 Kfps sub-uW/pix uncooled-PbSe digital imager with 10 bit DR adjustment and fpn correction for high-speed and low-cost MWIR applications[J]. IEEE J Solid-St Circ, 2015, 50(10): 2394-2405.

    [30] VIENS J F, MENEGHINI C, VILLENEUVE A, et al. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses[J]. J Lightwave Technol, 1999, 17(7): 1184-1191.

    [31] MAILOA J P, AKEY A J, SIMMONS C B, et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon[J]. Nat Commun, 2014(5): 4011

    [32] MALIK A, MUNEEB M, SHIMURA Y, et al. Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers[C]. 2013 IEEE Photonics Conference, Bellevue, WA, USA, 2013: 104-105.

    [33] CHERN G C, LAUKS I, NORIAN K H. Spin-coated amorphous chalcogenide films: Photoinduced effects[J]. Thin Solid Films, 1985, 123(4): 289-296.

    [34] KOHOUTEK T, WAGNER T, ORAVA J, et al. Amorphous films of Ag-As-S system prepared by spin-coating technique, preparation techniques and films physico-chemical properties[J]. Vacuum, 2004, 76(23): 191-194.

    [36] BULLA D A P, WANG R P, PRASAD A, et al. On the properties and stability of thermally evaporated Ge—As—Se thin films[J]. Appl Phys A-Mater Sci, 2009, 96(3): 615-625.

    [37] HAFIZ M M, EL-SHAZLY O, KINAWY N. Reversible phase change in BixSe100-x chalcogenide thin films for using as optical recording medium[J]. Appl Surf Sci, 2001, 171(3): 231-241.

    [38] KLEIN R M. Chalcogenide glasses as passive thin film structures for integrated optics[J]. J Electron Mater, 1974, 3(1): 79-99.

    [39] BESSONOV A F, GUDZENKO A I, DERYUGIN L N, et al. Thin-film chalcogenide glass waveguide for medium infrared range[J]. Soviet J Quantum Electr, 1976, 6(10): 1248-1249.

    [40] GAI X, MADDEN S, CHOI D Y, et al. Dispersion engineered Ge11. 5As24Se64. 5 nanowires with a nonlinear parameter of 136 W-1?m-1 at 1550 nm[J]. Opt Express, 2010, 18(18): 18866-18874.

    [41] KROGSTAD M R, AHN S, PARK W, et al. Optical characterization of chalcogenide Ge—Sb—Se waveguides at telecom wavelengths[J]. IEEE Photon Technol Lett, 2016, 28(23): 2720-2723.

    [42] SHEN B, LIN H, MERGET F, et al. Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits[J]. Opt Express, 2019, 27(10): 13781-13792.

    [43] CHEN Z, WAN L, SONG J, et al. Optical, mechanical and thermal characterizations of suspended chalcogenide glass microdisk membrane[J]. Opt Express, 2019, 27(11): 15918-15925.

    [44] HU J, TARASOV V, AGARWAL A, et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor[J]. Opt Express, 2007, 15(5): 2307-2314.

    [45] CHILES J, MALINOWSKI M, RAO A, et al. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching[J]. Appl Phys Lett, 2015, 106(11): 111110.

    [46] DU Q, HUANG Y, LI J, et al. Low-loss photonic device in Ge—Sb—S chalcogenide glass[J]. Opt Lett, 2016, 41(13): 3090-3093.

    [47] ZHOU J, DU Q, XU P, et al. Large nonlinearity and low loss Ge—Sb—Se glass photonic devices in near-infrared[J]. IEEE J Sel Top Quantum Electron, 2018, 24(4): 1-6.

    [48] MADDEN S J, CHOI D Y, BULLA D A, et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration[J]. Opt Express, 2007, 15(22): 14414-14421.

    [49] ZHU Y, WAN L, CHEN Z, et al. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators[J]. J Lightwave Technol, 2020, 38(17): 4817-4823.

    [50] SHEN W, ZENG P, YANG Z, et al. Chalcogenide glass photonic integration for improved 2 μm optical interconnection[J]. Photon Res, 2020, 8(9): 1484-1490.

    [51] ZHAO Y, LI C, GUO P, et al. Exploration of lift-off Ge—As—Se chalcogenide waveguides with thermal reflow process[J]. Opt Mater, 2019, 92: 206-211.

    [52] FRANTZ J A, SHAW L B, SANGHERA J S, et al. Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass[J]. Opt Express, 2006, 14(5): 1797-1803.

    [53] HU J, TARASOV V, CARLIE N, et al. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides[J]. Opt Express, 2007, 15(19): 11798-11807.

    [54] KROGSTAD M R, AHN S, PARK W, et al. Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices[J]. Opt Express, 2015, 23(6): 7870-7878.

    [55] LI C, GUO P, HUANG W, et al. Reverse-strip-structure Ge28Sb12Se60 chalcogenide glass waveguides prepared by micro-trench filling and lift-off[J]. J Opt Soc Am B, 2019, 37(1).

    [56] MORRIS J M, MACKENZIE M D, PETERSEN C R, et al. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics[J]. Opt Mater Express, 2018, 8(4): 1001-1011.

    [57] PAN W J, ROWE H, ZHANG D, et al. One-step hot embossing of optical rib waveguides in chalcogenide glasses[J]. Microw Opt Technol Lett, 2008, 50(7): 1961-1963.

    [58] TSAY C, ZHA Y, ARNOLD C B. Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides[J]. Opt Express, 2010, 18(25): 26744-26753.

    [59] HAN T, MADDEN S, DEBBARMA S, et al. Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating[J]. Opt Express, 2011, 19(25): 25447-25453.

    [60] ZOU Y, ZHANG D, LIN H, et al. High-performance, high-index- contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates[J]. Adv Opt Mater, 2014, 2(5): 478-486.

    [61] ZOU Y, MOREEL L, LIN H, et al. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic-organic hybrid photonic integration[J]. Adv Opt Mater, 2014, 2(8): 759-764.

    [62] ABDELMONEIM N S, MELLOR C J, BENSON T M, et al. Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip[J]. Opt Quantum Electron, 2015, 47(2): 351-361.

    [63] ZHANG P, ZHAO Z, ZENG J, et al. Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography[J]. Opt Mater Express, 2016, 6(6): 1853-1860.

    [64] KORNASZEWSKI L, GAYRAUD N, STONE J M, et al. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator[J]. Opt Express, 2007, 15(18): 11219-11224.

    [65] HO N, PHILLIPS M C, QIAO H, et al. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared[J]. Opt Lett, 2006, 31(12): 1860-1862.

    [66] DECKOFF J S, WANG Y, LIN H, et al. Tellurene: A multifunctional material for midinfrared optoelectronics[J]. ACS Photon, 2019, 6(7): 1632-1638.

    [67] LIN H, LI L, ZOU Y, et al. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators[J]. Opt Lett, 2013, 38(9): 1470-1472.

    [68] GUTIERREZ-ARROYO A, BAUDET E, BODIOU L, et al. Optical characterization at 7.7 micron of an integrated platform based on chalcogenide waveguides for sensing applications in the mid- infrared[J]. Opt Express, 2016, 24(20): 23109-23117.

    [69] STARECKI F, CHARPENTIER F, DOUALAN J L, et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers[J]. Sensors Actuat B-Chem, 2015, 207: 518-525.

    [70] STARECKI F, MORAIS S, CHAHAL R, et al. IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems[J]. Int J Greenh Gas Control, 2016, 55: 36-41.

    [71] WANG L L, MA W Q, ZHANG P Q, et al. Mid-infrared gas detection using a chalcogenide suspended-core fiber[J]. J Lightwave Technol, 2019, 37(20): 5193-5198.

    [72] SU P, HAN Z, KITA D, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector[J]. Appl Phys Lett, 2019, 114(5): 051103.

    [73] KURIAKOSE T, BAUDET E, HALENKOVIC T, et al. Measurement of ultrafast optical Kerr effect of Ge—Sb—Se chalcogenide slab waveguides by the beam self-trapping technique[J]. Opt Commun, 2017, 403: 352-357.

    [74] HALENKOVIC T, GUTWIRTH J, KURIAKOSE T, et al. Linear and nonlinear optical properties of co-sputtered Ge—Sb—Se amorphous thin films[J]. Opt Lett, 2020, 45(6): 1523-1526.

    [75] ALMEIDA J M P, BARBANO E C, ARNOLD C B, et al. Nonlinear optical waveguides in As2S3-Ag2S chalcogenide glass thin films[J]. Opt Mater Express, 2016, 7(1): 93-99.

    [76] ZHANG B, GUO W, YU Y, et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation[J]. J Am Ceram Soc, 2015, 98(5): 1389-1392.

    [77] ZHANG B, YU Y, ZHAI C, et al. High brightness 2. 2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber[J]. J Am Ceram Soc, 2016, 99(8): 2565-2568.

    [78] YU Y, ZHANG B, GAI X, et al. 1. 8-10 um mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Opt Lett, 2015, 40(6): 1081-1084.

    [79] WANG Y Y, DAI S X, LI G T, et al. 1. 4-7. 2 um broadband supercontinuum generation in an As—S chalcogenide tapered fiber pumped in the normal dispersion regime[J]. Opt Lett, 2017, 42(17): 3458-3461.

    [80] YU Y, GAI X, MA P, et al. Experimental demonstration of linearly polarized 2-10 um supercontinuum generation in a chalcogenide rib waveguide[J]. Opt Lett, 2016, 41(5): 958-961.

    [81] SERNA S, LIN H, ALONSO-RAMOS C, et al. Nonlinear optical properties of integrated GeSbS chalcogenide waveguides[J]. Photon Res, 2018, 6(5): 37-42.

    [82] DELCOURT E, JEBALI N, BODIOU L, et al. Self-phase modulation and four-wave mixing in a chalcogenide ridge waveguide[J]. Opt Mater Express, 2020, 10(6): 1440-1451.

    [83] OVSHINSKY S. Reversible electrical switching phenomena in disordered structures[J]. Phys Rev Lett, 1968, 21: 1453.

    [84] PELLIZZER F, BENVENUTI A, GLEIXNER B, et al. A 90 nm phase change memory technology for stand-alone non-volatile memory applications[C] 2006 Symposium on VLSI Technology, USA, 2006: 122-123.

    [85] SERVALLI G. A 45 nm generation phase change memory technology[C]. 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, USA, 2009: 1-4

    [86] PERNICE W, BHASKARAN H. Photonic non-volatile memories using phase change materials[J]. Appl Phys Lett, 2012, 101: 171101.

    [87] RíOS C, STEGMAIER M, HOSSEINI P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nat Photon, 2015, 9(11): 725-732.

    [88] VON K, FELDMANN J, GRUHLER N, et al. Reconfigurable nanophotonic cavities with nonvolatile response[J]. ACS Photon, 2018, 5(11): 4644-4649.

    [89] CHENG Z, RIOS C, YOUNGBLOOD N, et al. Device-level photonic memories and logic applications using phase-change materials[J]. Adv Mater, 2018, 30: 1802435.

    [91] FELDMANN J, STEGMAIER M, GRUHLER N, et al. Calculating with light using a chip-scale all-optical abacus[J]. Nat Commun, 2017, 8: 8.

    [92] RIOS C, YOUNGBLOOD N, CHENG Z G, et al. In-memory computing on a photonic platform[J]. Sci Adv, 2019, 5(2): 5759.

    [93] FELDMANN J, YOUNGBLOOD N, KARPOV M, et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 2021, 589(7840): 52-58.

    [94] CHENG Z, RIOS C, PERNICE W H P, et al. On-chip photonic synapse[J]. Sci Adv, 2017, 3(9) 1700160.

    [95] FELDMANN J, YOUNGBLOOD N, WRIGHT C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569(7755): 208-214.

    [96] TITTL A, MICHEL A K U, SCHAFERLING M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Adv Mater, 2015, 27(31): 4597-4603.

    [97] DU K K, LI Q, LYU Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 2017, 6(1): 16194.

    [98] KARVOUNIS A, GHOLIPOUR B, MACDONALD K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Appl Phys Lett, 2016, 109(5): 051103.

    [99] POGREBNYAKOV A, BOSSARD J, TURPIN J, et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material[J]. Opt Mater Express, 2018, 8: 2264.

    [100] YIN X H, STEINLE T, HUANG L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light Sci Appl, 2017, 6: 17016.

    [101] LIN H, SONG Y, HUANG Y, et al. Chalcogenide glass-on-graphene photonics[J]. Nat Photon, 2017, 11(12): 798-805.

    [102] DECKOFF-JONES S, LIN H, KITA D, et al. Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors [J]. J Opt, 2018, 20(4): 044004.

    [103] LI L, LIN H, QIAO S, et al. Integrated flexible chalcogenide glass photonic devices[J]. Nat Photon, 2014, 8(8): 643-649.

    [104] LI L, LIN H, QIAO S, et al. Monolithically integrated stretchable photonics[J]. Light Sci Appl, 2018, 7(2): 17138.

    [105] LI L, LIN H, HUANG Y, et al. High-performance flexible waveguide-integrated photodetectors[J]. Optica, 2018, 5: 44-51.

    [106] DAUS A, HAN S, KNOBELSPIES S, et al. Flexible CMOS electronics based on p-type Ge2Sb2Te5 and n-type InGaZnO4 semiconductors[C]. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2017: 8. 1. 1-8. 1. 4

    [107] LI L, ZOU Y, LIN H, et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects[J]. J Lightwave Technol, 2013, 31(24): 4080-4086.

    [108] VENTURA A, SLIMEN F B, LOUSTEAU J, et al. Flexible mid-IR fiber bundle for thermal imaging of inaccessible areas[J]. Opt Express, 2019, 27(15): 20259.

    JIAN Jialing, YE Yuting, LI Junying, SHI Yilin, SUN Chunlei, MA Hui, WU Jianghong, LUO Ye, LIN Hongtao, LI Lan. Recent Progress of Micro/Nano Photonic Devices Based on Chalcogenide Glasses[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2676
    Download Citation