• Photonics Research
  • Vol. 12, Issue 11, 2733 (2024)
Arghadeep Pal1,2,†, Alekhya Ghosh1,2,†, Shuangyou Zhang1, Lewis Hill1..., Haochen Yan1,2, Hao Zhang1,3, Toby Bi1,2, Abdullah Alabbadi1,2 and Pascal Del’Haye1,2,*|Show fewer author(s)
Author Affiliations
  • 1Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
  • 2Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
  • 3National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • show less
    DOI: 10.1364/PRJ.535301 Cite this Article Set citation alerts
    Arghadeep Pal, Alekhya Ghosh, Shuangyou Zhang, Lewis Hill, Haochen Yan, Hao Zhang, Toby Bi, Abdullah Alabbadi, Pascal Del’Haye, "Linear and nonlinear coupling of light in twin-resonators with Kerr nonlinearity," Photonics Res. 12, 2733 (2024) Copy Citation Text show less
    References

    [1] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [2] X. Shi, W. Fan, A. K. Hansen. Thermal behaviors and optical parametric oscillation in 4H-silicon carbide integrated platforms. Adv. Photonics Res., 2, 2100068(2021).

    [3] K. Guo, L. Yang, X. Shi. Nonclassical optical bistability and resonance-locked regime of photon-pair sources using silicon microring resonator. Phys. Rev. Appl., 11, 034007(2019).

    [4] A. Ghadi, S. Mirzanejhad. Two-photon absorption effect on semiconductor microring resonators. Optik, 126, 1645-1649(2015).

    [5] S. Chen, L. Zhang, Y. Fei. Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects. Opt. Express, 20, 7454-7468(2012).

    [6] E. M. Wright, P. Meystre, W. J. Firth. Theory of the nonlinear Sagnac effect in a fiber-optic gyroscope. Phys. Rev. A, 32, 2857-2863(1985).

    [7] M. T. M. Woodley, J. M. Silver, L. Hill. Universal symmetry-breaking dynamics for the Kerr interaction of counterpropagating light in dielectric ring resonators. Phys. Rev. A, 98, 053863(2018).

    [8] L. Hill, G.-L. Oppo, M. T. M. Woodley. Effects of self- and cross-phase modulation on the spontaneous symmetry breaking of light in ring resonators. Phys. Rev. A, 101, 013823(2020).

    [9] L. Del Bino, J. M. Silver, S. L. Stebbings. Symmetry breaking of counter-propagating light in a nonlinear resonator. Sci. Rep., 7, 43142(2017).

    [10] Q.-T. Cao, H. Wang, C.-H. Dong. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 118, 033901(2017).

    [11] M. T. M. Woodley, L. Hill, L. Del Bino. Self-switching Kerr oscillations of counterpropagating light in microresonators. Phys. Rev. Lett., 126, 043901(2021).

    [12] L. D. Bino, J. M. Silver, M. T. M. Woodley. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica, 5, 279-282(2018).

    [13] L. Hill, E.-M. Hirmer, G. Campbell. Symmetry broken vectorial Kerr frequency combs from Fabry-Pérot resonators. Commun. Phys., 7, 82(2024).

    [14] P. Del’Haye, A. Schliesser, O. Arcizet. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [15] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [16] H. Yan, A. Ghosh, A. Pal. Real-time imaging of standing-wave patterns in microresonators. Proc. Natl. Acad. Sci. USA, 121, e2313981121(2024).

    [17] M. Yu, Y. Okawachi, A. G. Griffith. Microresonator-based high-resolution gas spectroscopy. Opt. Lett., 42, 4442-4445(2017).

    [18] N. Alic. Frequency combs in telecommunications applications. Frontiers in Optics, FM3C–6(2014).

    [19] S. Zhang, J. M. Silver, X. Shang. Terahertz wave generation using a soliton microcomb. Opt. Express, 27, 35257-35266(2019).

    [20] L. D. Bino, N. Moroney, P. Del’Haye. Optical memories and switching dynamics of counterpropagating light states in microresonators. Opt. Express, 29, 2193-2203(2021).

    [21] A. D. White, G. H. Ahn, K. V. Gasse. Integrated passive nonlinear optical isolators. Nat. Photonics, 17, 143-149(2023).

    [22] N. Moroney, L. D. Bino, M. T. M. Woodley. Logic gates based on interaction of counterpropagating light in microresonators. J. Lightwave Technol., 38, 1414-1419(2020).

    [23] A. Melloni, F. Morichetti, M. Martinelli. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quantum Electron., 35, 365-379(2003).

    [24] Y. Chen, S. Blair. Nonlinearity enhancement in finite coupled-resonator slow-light waveguides. Opt. Express, 12, 3353-3366(2004).

    [25] S.-T. Guo, Y.-H. Zhang, L.-L. Wu. Transition between coupled-resonator-induced transparency and absorption. Phys. Rev. A, 103, 033510(2021).

    [26] I. S. Grudinin, H. Lee, O. Painter. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 104, 083901(2010).

    [27] Q. Hua, C. Yang, X. Jiang. High-order filters based on three high-Q microtoroid cavities. Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), 1-2(2017).

    [28] H. Fan, L. Fan, C. Xia. Tunable Fano-like resonance analysis based on a system consisting of a two-silica-microdisk-coupled Mach–Zehnder interferometer and graphene. J. Opt. Soc. Am. B, 34, 2429-2435(2017).

    [29] J. Wen, L. Jiang, X. Jiang. Pt-symmetry and on-chip optical nonreciprocity in active-passive-coupled microtoroids. Frontiers in Optics, FTh2B–6(2014).

    [30] A. Ghosh, L. Hill, G.-L. Oppo. Four-field symmetry breakings in twin-resonator photonic isomers. Phys. Rev. Res., 5, L042012(2023).

    [31] A. Ghosh, A. Pal, L. Hill. Controlled light distribution with coupled microresonator chains via Kerr symmetry breaking. Photon. Res., 12, 2376-2389(2024).

    [32] J. Mai, K. W. Cheah. Nonreciprocal transmission in a nonlinear coupled heterostructure. Opt. Express, 30, 46357-46365(2022).

    [33] J. Mai, X. Huang, X. Guo. Spontaneous symmetry breaking of coupled Fabry–Pérot nanocavities. Commun. Phys., 7, 223(2024).

    [34] D. Pidgaiko, J. Riemensberger, A. Tusnin. Dispersion engineering with coupled microresonators for extended soliton microcomb control. Conference on Lasers and Electro-Optics (CLEO), 1-2(2023).

    [35] S. A. Miller, Y. Okawachi, S. Ramelow. Tunable frequency combs based on dual microring resonators. Opt. Express, 23, 21527-21540(2015).

    [36] K. Komagata, A. Tusnin, J. Riemensberger. Dissipative Kerr solitons in a photonic dimer on both sides of exceptional point. Commun. Phys., 4, 159(2021).

    [37] A. Tikan, J. Riemensberger, K. Komagata. Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys., 17, 604-610(2021).

    [38] H. Sakaguchi, B. A. Malomed. Symmetry breaking of solitons in two-component Gross-Pitaevskii equations. Phys. Rev. E, 83, 036608(2011).

    [39] H. Sakaguchi, B. A. Malomed. Symmetry breaking in a two-component system with repulsive interactions and linear coupling. Commun. Nonlinear Sci. Numer. Simul., 92, 105496(2021).

    [40] P. Del’Haye, S. A. Diddams, S. B. Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Appl. Phys. Lett., 102, 221119(2013).

    [41] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

    [42] B. Garbin, J. Fatome, G.-L. Oppo. Asymmetric balance in symmetry breaking. Phys. Rev. Res., 2, 023244(2020).

    [43] A. Pal, A. Ghosh, S. Zhang. Machine learning assisted inverse design of microresonators. Opt. Express, 31, 8020-8028(2023).

    [44] Ó. B. Helgason, F. R. Arteaga-Sierra, Z. Ye. Dissipative solitons in photonic molecules. Nat. Photonics, 15, 305-310(2021).

    [45] Z. Yuan, M. Gao, Y. Yu. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat. Photonics, 17, 977-983(2023).

    [46] M. Zhang, C. Wang, Y. Hu. Electronically programmable photonic molecule. Nat. Photonics, 13, 36-40(2019).

    [47] B. Peng, Ş. Özdemir, S. Rotter. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    Arghadeep Pal, Alekhya Ghosh, Shuangyou Zhang, Lewis Hill, Haochen Yan, Hao Zhang, Toby Bi, Abdullah Alabbadi, Pascal Del’Haye, "Linear and nonlinear coupling of light in twin-resonators with Kerr nonlinearity," Photonics Res. 12, 2733 (2024)
    Download Citation