• Advanced Photonics
  • Vol. 3, Issue 1, 014001 (2021)
Yanling Zhuang1, Xiuli Ren1, Xueting Che1, Shujuan Liu1, Wei Huang1、2、*, and Qiang Zhao1、*
Author Affiliations
  • 1Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Nanjing, China
  • 2Northwestern Polytechnical University, Xi’an Institute of Flexible Electronics, Institute of Flexible Electronics, Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics, Shaanxi Key Laboratory of Flexible Electronics, Xi’an Key Laboratory of Flexible Electronics, Xi’an Key Laboratory of Biomedical Materials and Engineering, Xi’an, China
  • show less
    DOI: 10.1117/1.AP.3.1.014001 Cite this Article Set citation alerts
    Yanling Zhuang, Xiuli Ren, Xueting Che, Shujuan Liu, Wei Huang, Qiang Zhao. Organic photoresponsive materials for information storage: a review[J]. Advanced Photonics, 2021, 3(1): 014001 Copy Citation Text show less
    References

    [1] Y. Zhuang et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater., 28, 1705769(2018).

    [2] M. Gu et al. Optical storage arrays: a perspective for future big data storage. Light: Sci. Appl., 3, e177(2014).

    [3] M. Gu et al. Nanomaterials for optical data storage. Nat. Rev. Mater., 1, 16070(2016).

    [4] D. Liu et al. Tailoring multidimensional traps for rewritable multilevel optical data storage. ACS Appl. Mater. Interfaces, 11, 35023-35029(2019).

    [5] X. Ouyang et al. Polychromatic and polarized multilevel optical data storage. Nanoscale, 11, 2447-2452(2019).

    [6] D. Xu et al. Multi-Dimensional Optical Storage(2016).

    [7] L. Wang et al. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem. Soc. Rev., 47, 1044-1097(2018).

    [8] J. Zhang et al. Photochromic materials: more than meets the eye. Adv. Mater., 25, 378-399(2012).

    [9] D. Kim et al. Multicolor fluorescence photoswitching: color-correlated versus color-specific switching. Adv. Opt. Mater., 6, 1800678(2018).

    [10] D.-H. Qu et al. Photoresponsive host-guest functional systems. Chem. Rev., 115, 7543-7588(2015).

    [11] Y. Wu et al. Crystal structure and phototransistor behavior of N-substituted heptacence. ACS Appl. Mater. Interfaces, 4, 1883-1886(2012).

    [12] G. Sonmez et al. A highly stable, new electrochromic polymer: poly(1,4-bis(2-(3′,4′-ethylenedioxy)thienyl)-2-methoxy-5-2″-ethylhexyloxybenzene). Adv. Funct. Mater., 13, 726-731(2003).

    [13] Z. Li et al. Loading photochromic molecule into luminescent metal-organic framework for potential information anti-counterfeiting. Angew. Chem. Int. Ed., 58, 18025-18031(2019).

    [14] Y. Li et al. Recent advances in organic-based materials for resistive memory applications. Infomat, 2, 995-1033(2020).

    [15] B. Zhang et al. Redox gated polymer memristive processing memory unit. Nat. Commun., 10, 736(2019).

    [16] T. Leydecker et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol., 11, 769-775(2016).

    [17] P.-Y. Gu et al. Synthesis of tetranitro-oxacalix[4]arene with oligoheteroacene groups and its nonvolatile ternary memory performance. Mater. Horiz., 1, 446-451(2014).

    [18] B. Hwang et al. Recent advances in memory devices with hybrid materials. Adv. Electron. Mater., 5, 1800519(2019).

    [19] C. Wang et al. Recent progress on organic resistance memory with small molecules and inorganic-organic hybrid polymers as active elements. J. Mater. Chem. C., 3, 10055-10065(2015).

    [20] S. Goswami et al. Nanometer-scale uniform conductance switching in molecular memristors. Adv. Mater., 32, 2004370(2020).

    [21] M.-M. Russew et al. Photoswitches: from molecules to materials. Adv. Mater., 22, 3348-3360(2010).

    [22] H. Bouas-Laurent et al. Organic photochromism (IUPAC technical report). Pure Appl. Chem., 73, 639-665(2001).

    [23] M. Irie et al. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev., 114, 12174-12277(2014).

    [24] R. Pardo et al. Photochromic organic-inorganic hybrid materials. Chem. Soc. Rev., 40, 672-687(2011).

    [25] D. Bléger et al. Visible-light-activated molecular switches. Angew. Chem. Int. Ed., 54, 11338-11349(2015).

    [26] X. Yao et al. Recent progress in photoswitchable supramolecular self-assembling systems. Adv. Opt. Mater., 4, 1322-1349(2016).

    [27] J. Zhang et al. The endeavor of diarylethenes: new structures, high performance, and bright future. Adv. Opt. Mater., 6, 1701278(2018).

    [28] Q. Yan et al. The marriage between aggregation induced emission and photochromics for promising photoresponsive smart materials. Mater. Chem. Front., 4, 3153-3175(2020).

    [29] Q. Zhang et al. Nondestructive up-conversion readout in Er/Yb co-doped Na0.5Bi2.5Nb2[30] K. Li et al. Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging. J. Mater. Chem., 22, 1257-1264(2012).

    [31] J. Chen et al. Design and synthesis of FRET-mediated multicolor and photoswitchable fluorescent polymer nanoparticles with tunable emission properties. J. Phys. Chem. B., 116, 4354-4362(2012).

    [32] H. Wang et al. Switchable single fluorescent polymeric nanoparticles for stable white-light generation. J. Mater. Chem. C, 6, 9897-9902(2018).

    [33] H. Gao et al. Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence. Nano Lett., 10, 1440-1444(2010).

    [34] Z. Tian et al. Photoswitching-enabled novel optical imaging: innovative solutions for real-world challenges in fluorescence detections. Acc. Chem. Res., 46, 269-279(2013).

    [35] Z. Xu et al. Supramolecular color-tunable photoluminescent materials based on a chromophore cascade as security inks with dual encryption. Mater. Chem. Front., 1, 1847-1852(2017).

    [36] J. Cusido et al. Fluorescent switches based on photochromic compounds. Eur. J. Org. Chem., 2009, 2031-2045(2009).

    [37] F. M. Raymo et al. Electron and energy transfer modulation with photochromic switches. Chem. Soc. Rev., 34, 327-336(2005).

    [38] R. Haldar et al. Advanced photoresponsive materials using the metal-organic framework approach. Adv. Mater., 32, 1905227(2020).

    [39] A. M. Rice et al. Photophysics modulation in photoswitchable metal-organic frameworks. Chem. Rev., 120, 8790-8813(2020).

    [40] F. Ercole et al. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem., 1, 37-54(2010).

    [41] M. Irie et al. Photochromism of diarylethene single molecules and single crystals. Photochem. Photobiol. Sci., 9, 1535-1542(2010).

    [42] Q. Luo et al. Recent progress on photochromic diarylethene polymers. Polym. Chem., 2, 2435-2443(2011).

    [43] D. Gust et al. Data and signal processing using photochromic molecules. Chem. Commun., 48, 1947-1957(2012).

    [44] M. Qin et al. Photochromic sensors: a versatile approach for recognition and discrimination. J. Mater. Chem. C, 3, 9265-9275(2015).

    [45] A. Fihey et al. Multiphotochromic molecular systems. Chem. Soc. Rev., 44, 3719-3759(2015).

    [46] E. Orgiu et al. 25th anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv. Mater., 26, 1827-1845(2014).

    [47] R. Klajn et al. Spiropyran-based dynamic materials. Chem. Soc. Rev., 43, 148-184(2014).

    [48] M. Irie et al. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J. Org. Chem., 53, 803-808(1988).

    [49] F. Yu et al. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed., 58, 16101-16104(2019).

    [50] D. Kim et al. Flexible molecular-scale electronic devices composed of diarylethene photoswitching molecules. Adv. Mater., 26, 3968-3973(2014).

    [51] A. M. Asadirad et al. Controlling a polymer adhesive using light and a molecular switch. J. Am. Chem. Soc., 136, 3024-3027(2014).

    [52] B. Yoon et al. Recent functional material based approaches to prevent and detect counterfeiting. J. Mater. Chem. C, 1, 2388-2403(2013).

    [53] M. Natalia et al. Molecular switches as photocontrollable “smart” receptors. Chem. Soc. Rev., 41, 4010-4029(2012).

    [54] H. Wu et al. Reversibly photoswitchable supramolecular assembly and its application as a photoerasable fluorescent ink. Adv. Mater., 29, 1605271(2017).

    [55] H.-G. Fu et al. Quaternary supramolecular nanoparticles as a photoerasable luminescent ink and photocontrolled cell-imaging agent. Adv. Opt. Mater., 8, 2000220(2020).

    [56] G. Hartley et al. The cis-form of azobenzene. Nature., 140, 281(1937).

    [57] M. Dong et al. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res., 48, 2662-2670(2015).

    [58] K. E. Sapsford et al. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed., 45, 4562-4589(2006).

    [59] L. Giordano et al. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc., 124, 7481-7489(2002).

    [60] M. Yu et al. From a molecular toolbox to a toolbox for photoswitchable fluorescent polymeric nanoparticles. Adv. Funct. Mater., 28, 1804759(2018).

    [61] J. Han et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater., 6, 1800538(2018).

    [62] W. Jeong et al. Full color light responsive diarylethene inks for reusable paper. Adv. Funct. Mater., 26, 5230-5238(2016).

    [63] G. Bretel et al. Fabrication of robust spatially resolved photochromic patterns on cellulose papers by covalent printing for anticounterfeiting applications. ACS Appl. Polym. Mater., 1, 1240-1250(2019).

    [64] N.-H. Xie et al. Deciphering erasing/writing/reading of near-infrared fluorophore for nonvolatile optical memory. ACS Appl. Mater. Interfaces, 11, 23750-23756(2019).

    [65] D. Kim et al. Fully reversible multistate fluorescence switching: organogel system consisting of luminescent cyanostilbene and turn-on diarylethene. Adv. Funct. Mater., 28, 1706213(2018).

    [66] C. Li et al. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nat. Commun., 5, 5709(2014).

    [67] G. Liu et al. Controlled photoerasable fluorescent behaviors with dithienylethene-based molecular turnstile. ACS Appl. Mater. Interfaces, 10, 12135-12140(2018).

    [68] L. Ma et al. Unsymmetrical photochromic bithienylethene-bridge tetraphenylethene molecular switches: synthesis, aggregation-induced emission and information storage. Chin. Chem. Lett., 31, 361-364(2020).

    [69] C. Li et al. Photoswitchable aggregation-induced emission of a dithienylethene-tetraphenylethene conjugate for optical memory and super-resolution imaging. RSC Adv., 3, 8967-8972(2013).

    [70] A. Abdollahi et al. Rewritable anticounterfeiting polymer inks based on functionalized stimuli-responsive latex particles containing spiropyran photoswitches: reversible photopatterning and security marking. ACS Appl. Mater. Interfaces, 10, 39279-39292(2018).

    [71] Q. Qi et al. Solid-state photoinduced luminescence switch for advanced anticounterfeiting and super-resolution imaging applications. J. Am. Chem. Soc., 139, 16036-16039(2017).

    [72] S. Sumiya et al. Spiropyran-cholesterol conjugate as a photoresponsive organogelator. New J. Chem., 37, 2642-2647(2013).

    [73] Y. Hong et al. Aggregation-induced emission. Chem. Soc. Rev., 40, 5361-5388(2011).

    [74] R. Hu et al. Recent advances in AIE polymers. Polym. J., 48, 359-370(2016).

    [75] D. D. La et al. Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl. Mater. Interfaces, 10, 12189-12216(2018).

    [76] Z. Yang et al. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front., 2, 861-890(2018).

    [77] S. Peng et al. Synthesis and application of reversible fluorescent photochromic molecules based on tetraphenylethylene and photochromic groups. New J. Chem., 43, 617-621(2019).

    [78] C. Y. Y. Yu et al. A tetraphenylethene-based caged compound: synthesis, properties and applications. Chem. Commun., 50, 8134-8136(2014).

    [79] G. Huang et al. Multiple anti-counterfeiting guarantees from a simple tetraphenylethylene derivative—high-contrasted and multi-state mechanochromism and photochromism. Angew. Chem. Int. Ed., 58, 17814-17819(2019).

    [80] Y. Ma et al. On-demand regulation of photochromic behavior through various counterions for high-level security printing. Sci. Adv., 6, eaaz2386(2020).

    [81] Z. Li et al. Photoresponsive luminescent polymeric hydrogels for reversible information encryption and decryption. Adv. Sci., 6, 1901529(2019).

    [82] C. Liu et al. Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis. Adv. Mater., 32, 1907569(2020).

    [83] W. Wang et al. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat. Commun., 5, 5459(2014).

    [84] R. Samanta et al. Mechanical actuation and patterning of rewritable crystalline monomer-polymer heterostructures via topochemical polymerization in a dual-responsive photochromic organic material. ACS Appl. Mater. Interfaces, 12, 16856-16863(2020).

    [85] J. Yuan et al. Dynamic anti-counterfeiting security features using multicolor dianthryl sulfoxides. Chem. Sci., 10, 10113-10121(2019).

    [86] Y. Zhang et al. Excitation wavelength-dependent fluorescence of an ESIPT triazole derivative for amine sensing and anti-counterfeiting applications. Angew. Chem. Int. Ed., 58, 8773-8778(2019).

    [87] K. Li et al. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex. J. Am. Chem. Soc., 136, 1643-1649(2014).

    [88] Y. Li et al. A photoactivatable photochromic system served as self-hidden information storage material. Mater. Chem. Front., 1, 2356-2359(2017).

    [89] Y. Li et al. Fluoran salicylaldehyde hydrazone Zn(II) complex: reversible photochromic system both in solution and in solid matrix. J. Mater. Chem. C, 5, 7553-7560(2017).

    [90] R. A. Kopelman et al. Photoprocesses and magnetic behavior of photochromic transition metal indoline[phenanthrolinospirooxazine] complexes: tunable photochromic materials. Inorg. Chim. Acta, 361, 3570-3576(2008).

    [91] R. A. Kopelman et al. Tunable photochromism of spirooxazines via metal coordination. J. Am. Chem. Soc., 125, 13684-13685(2003).

    [92] W.-P. Lin et al. Polymer-based resistive memory materials and devices. Adv. Mater., 26, 570-606(2014).

    [93] J.-M. Schumers et al. Light-responsive block copolymers. Macromol. Rapid Commun., 31, 1588-1607(2010).

    [94] Y. Zhao et al. Light-responsive block copolymer micelles. Macromolecules, 45, 3647-3657(2012).

    [95] P. Theato et al. Stimuli responsive materials. Chem. Soc. Rev., 42, 7055-7056(2013).

    [96] J. Wang et al. Organoboron-based photochromic copolymers for erasable writing and patterning. Macromolecules, 50, 4629-4638(2017).

    [97] B. Wang et al. High strength dual-crosslinked hydrogels with photo-switchable color changing behavior. Eur. Polym. J., 116, 545-553(2019).

    [98] X. Zhang et al. Multi-responsive hydrogel actuator with photo-switchable color changing behaviors. Dyes Pigm., 174, 108042(2020).

    [99] P. Chen et al. White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J. Am. Chem. Soc., 137, 11590-11593(2015).

    [100] L. D. Carlos et al. Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem. Soc. Rev., 40, 536-549(2011).

    [101] J.-C. G. Bünzli et al. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev., 110, 2729-2755(2010).

    [102] L. Du et al. From shape and color memory PCL network to access high security anti-counterfeit material. Polymer, 172, 52-57(2019).

    [103] Z. Lin et al. Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. J. Mater. Chem. C, 7, 11515-11521(2019).

    [104] J. Chen et al. Amphiphilic BODIPY-based photoswitchable fluorescent polymeric nanoparticles for rewritable patterning and dual-color cell imaging. Macromolecules, 48, 3500-3508(2015).

    [105] W.-K. Tsai et al. Dual colorimetric and fluorescent authentication based on semiconducting polymer dots for anticounterfeiting applications. ACS Appl. Mater. Interfaces, 9, 30918-30924(2017).

    [106] J. Ma et al. Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning. Chem. Commun., 46, 3463-3465(2010).

    [107] A. Abdollahi et al. Photoswitchable fluorescent polymer nanoparticles as high-security anticounterfeiting materials for authentication and optical patterning. J. Mater. Chem. C, 8, 5476-5493(2020).

    [108] A. Abdollahi et al. Interaction of photoswitchable nanoparticles with cellulosic materials for anticounterfeiting and authentication security documents. Carbohyd. Polym., 230, 115603(2020).

    [109] M. Zuo et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl. Mater. Interfaces, 10, 39214-39221(2018).

    [110] Z. Gao et al. Cooperative supramolecular polymers with anthracene-endoperoxide photo-switching for fluorescent anti-counterfeiting. Nat. Commun., 9, 3977(2018).

    [111] M. Mathews et al. Light-driven reversible handedness inversion in self-organized helical superstructures. J. Am. Chem. Soc., 132, 18361-18366(2010).

    [112] Y. Li et al. Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures. Angew. Chem. Int. Ed., 52, 8925-8929(2013).

    [113] Y. Wang et al. Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. J. Am. Chem. Soc., 134, 3342-3345(2012).

    [114] L. Qin et al. Efficient visible-light full-color tuning of self-organized helical superstructures enabled by fluorinated chiral switches. RSC Adv., 8, 38935-38940(2018).

    [115] L. Qin et al. Piecewise phototuning of self-organized helical superstructures. Adv. Mater., 30, 1704941(2017).

    [116] L. Wang et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J. Am. Chem. Soc., 136, 4480-4483(2014).

    [117] L. Xu et al. Fabrication of multicolored patterns based on dye-doped cholesteric liquid crystals. Photochem. Photobiol. Sci., 18, 1638-1648(2019).

    [118] J. Li et al. Photoswitchable fluorescent liquid crystal nanoparticles and their inkjet-printed patterns for information encrypting and anti-counterfeiting. Part. Part. Syst. Charact., 36, 1900346(2019).

    [119] J. Li et al. Dicyanodistyrylbenzene-based chiral fluorescence photoswitches: an emerging class of multifunctional switches for dual-mode phototunable liquid crystals. Adv. Opt. Mater., 5, 1700014(2017).

    [120] S. Li et al. Phototuning energy transfer in self-organized luminescent helical superstructures for photonic applications. Adv. Opt. Mater., 8, 2000107(2020).

    [121] Y. Li et al. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. J. Am. Chem. Soc., 134, 9573-9576(2012).

    [122] Y. Li et al. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures. Angew. Chem. Int. Ed., 52, 13703-13707(2013).

    [123] Y. Li et al. Photochemically reversible and thermally stable axially chiral diarylethene switches. Org. Lett., 14, 4362-4365(2012).

    [124] Y. Li et al. A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power. J. Mater. Chem. C, 1, 3917-3923(2013).

    [125] J. Li et al. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches. Adv. Mater., 31, 1807751(2019).

    Yanling Zhuang, Xiuli Ren, Xueting Che, Shujuan Liu, Wei Huang, Qiang Zhao. Organic photoresponsive materials for information storage: a review[J]. Advanced Photonics, 2021, 3(1): 014001
    Download Citation