• Optical Communication Technology
  • Vol. 49, Issue 2, 49 (2025)
LIANG Jingyuan1, ZHANG Xinwen1, KE Chenghu2, and KE Xizheng1,3
Author Affiliations
  • 1Faculty of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
  • 2School of Information Engineering, Xi'an University, Xi'an 710048, China
  • 3Shaanxi Civil-Military Integration Key Laboratory of Intelligence Collaborative Networks, Xi'an 710048, China
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2025.02.010 Cite this Article
    LIANG Jingyuan, ZHANG Xinwen, KE Chenghu, KE Xizheng. Research progress on wavefront aberration correction using Zernike polynomials[J]. Optical Communication Technology, 2025, 49(2): 49 Copy Citation Text show less
    References

    [2] LUKOSZ W. Der einflu der aberrationen auf die optischeu bertragungsfunktion bei kleinen orts-frequenze[J]. Optica Acta, 1963, 10: 1-19.

    [3] NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the optical society of america, 1976, 66(3): 207-211.

    [4] BABCOCK H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65: 229-236.

    [5] FRIED D L. Special issue on adaptive optics[J]. JOSA, 1977, 67(3): 4-22.

    [6] HARDY J W. Active optics: a new technology for the control of light[J]. Journal of the Optical Society of America A, 1978, 66(6): 651-697.

    [7] RODDIER N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1181.

    [8] DANIEL M H, MARTIN C V, JOSE J S. Wavefront fitting with discrete orthogonal polynomials in a unit radius circle[J]. Optical Engineering, 1990, 29(6): 672-676.

    [9] UPTON R, ELLERBROEK B. Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape[J]. Optics Letters, 2004, 29(24): 2840-2852.

    [10] MAHAJAN V N, AFTAB M. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts[J]. Applied Optics, 2010, 49(33): 6489-6501.

    [11] OYA S, BOUVIER A, GUYON O, et al. Performance of the deformable mirror for Subaru LGSAO[J]. SPIE, 2006, 6272: 1523-1530.

    [12] SEIFERT L, TIZIANI H J, OSTEN W. Wavefront reconstruction with the adaptive Shack-Hartmann sensor[J]. Optics Communications, 2005, 245(16): 255-269.

    [13] HEMMATI H, CHEN Y J, CROSSFIEL D. Telescope wavefront aberration compensation with a deformable mirror in an adaptive optics system[C]//SPIE. Proceedings of Conference on Free-Space Laser Communication Technologies XVIII. Seattle: SPIE, 2006: 123-127.

    [14] DUNCAN T S, VOAS J K, EAGER R J, et al. Low-latency adaptive optical system processing electronics[J]. Publications of the Astronomical Society of the Pacific, 2003, 4839: 924-934.

    [15] GENDRON E, CUBY J, RIGAUT F, et al. Come-on-plus project: an upgrade of the come-on adaptive optics prototype system[J]. Publications of the Astronomical Society of the Pacific, 1991, 1542: 297-297.

    [16] WILKS S C, MORRIS J R, BRASE J M, et al. Modeling of adaptive-optics-based free-space communications systems[C]//SPIE. Proceedings of Conference on Free-space Laser Communication and Laser Imaging. Seattle: SPIE, 2002: 121-128.

    [17] PASUPATHI T, SELCI J A V, SAMUEL J N. Mitigation of low-order atmospheric turbulent effects using sensor less adaptive optics in terrestrial free space optical communication[C]//IEEE. Proceedings of 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). Pudukkottai: IEEE, 2016: 1-6.

    [18] BOOTH M J, DBARRE D, JESACHER A. Adaptive optics for biomedical microscopy[J]. Optics and Photonics News, 2012, 23(1): 22-29.

    [19] TOSELLI I, GLADYSZ S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence[J]. Optics Express, 2020, 28(12): 17347-17361.

    [20] RUKOSUEV A, NIKITIN A, TOPOROVSKY V, et al. Real-time correction of a laser beam wavefront distorted by an artificial turbulent heated airflow[J]. Photonics, 2022, 9(5): 351-351.

    [21] SHIKHOVTSEV A Y, KOVADLO P G, CHUPRAKOV S A, et al. Correction of wavefront distortions in wide-field adaptive optics systems[C]//SPIE. Proceedings of Institute of Solar-Terrestrial Physics (Russian Federation) V E, Zuev Institute of Atmospheric Optics(Russian Federation). Bellingham: SPIE, 2023: 12780-1-12780-16.

    [22] JEON H, HUS S, PARK J, et al. Wavefront distortion correction in scanning tunneling microscope image[J]. The ReView of Scientific Instruments, 2024, 95(50): 53710-1-53710-19.

    [31] HUANG L H, RAO C H. Wavefront sensorless adaptive optics: ageneral model-based approach[J]. Optics Express, 2009, 19(1): 371-379.

    [47] KE X Z, ZHANG D Y. Fuzzy control algorithm for adaptive optical system[J]. Applied Optics, 2019, 58(36): 9967-9975.

    [48] DBARRE D, BOOTH M J, WILSON T. Image based adaptive optics through optimization of low spatial frequencies[J]. Optics Express, 2007, 15(13): 8176-8190.

    [49] WANG P, HADAEGH F Y. Computation of static shapes and voltages for micromachined deformable mirrors with nonlinear electrostatic actuators[J]. Journal of Microelectro Mechanical System, 1996, 5(3): 205-220.

    [53] HU W. Research on distortion wavefront processing technology based on pattern method[D]. Chengdu: University of Electronic Science and Technology of China, 2017.

    [54] BOOTH M J. Wave front sensorless adaptive optics: a model based approach using sphere packings[J]. Optics Express, 2006, 14(4): 1339-1352.

    LIANG Jingyuan, ZHANG Xinwen, KE Chenghu, KE Xizheng. Research progress on wavefront aberration correction using Zernike polynomials[J]. Optical Communication Technology, 2025, 49(2): 49
    Download Citation