• High Power Laser and Particle Beams
  • Vol. 35, Issue 6, 061001 (2023)
Wanguo Zheng, Ye Tian*, Wei Han, Xiangxu Chai, Xuewei Deng, Taixiang Liu, and Wei Liao
Author Affiliations
  • Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202335.220402 Cite this Article
    Wanguo Zheng, Ye Tian, Wei Han, Xiangxu Chai, Xuewei Deng, Taixiang Liu, Wei Liao. Research progress on loading capability of high-power solid-state laser facilities[J]. High Power Laser and Particle Beams, 2023, 35(6): 061001 Copy Citation Text show less
    References

    [1] Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 601, 542-548(2022).

    [2] Zheng Wanguo, Zu Xiaotao, Yuan Xiaodong, et al. Damage resistance physical problems of high power laser facilities[M]. Beijing: Science Press, 2014

    [3] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 69, 146-249(2016).

    [4] Nicolaizeau M, Miquel J L. LMJ status: fifth bundle commissioning PW class laser coupling[C]Proceedings of the SPIE 10898, High Power Lasers f Fusion Research V. 2019: 1089802.

    [5] Bass M. When everything damaged we didn’t know why[C]Proceedings of the SPIE 10805, LaserInduced Damage in Optical Materials 2018: 50th Anniversary Conference. 2018: 1080504.

    [6] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 69, 295-351(2016).

    [7] Hallo G, Lacombe C, Néaupt J, et al. Detection tracking of laser damage on LMJ vacuum windows by digital image crelation[C]Proceedings of the SPIE 11732, Dimensional Optical Metrology Inspection f Practical Applications X. 2021: 117320C.

    [8] Han Wei, Feng Bin, Zheng Kuixing, . Laser-induced damage growth of fused silica at 351 nm on a large-aperture high-power laser facility[J]. Acta Physics Sinica, 65, 246102(2016).

    [9] Yang Liming, Huang Jin, Liu Hongjie, . Review of research progress on damage characteristics of fused silica optics under ultraviolet pulsed laser irradiation[J]. Acta Optica Sinica, 42, 1714004(2022).

    [10] Wong J, Ferriera J L, Lindsey E F, et al. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses[J]. Journal of Non-Crystalline Solids, 352, 255-272(2006).

    [11] Wang Ke, Ma Bin, Han Jiaqi, et al. Morphological and damage growth characteristics of shell-type damage of fused silica optics induced by ultraviolet laser pulses[J]. Applied Optics, 58, 8882-8888(2019).

    [12] Zhai Lingling, Feng Guoying, Gao Xiang, . Mechanism of laser damage induced by inclusions in fused silica[J]. High Power Laser and Particle Beams, 25, 2836-2840(2013).

    [13] Gao Xiang, Qiu Rong, Zhou Guorui, . Effect of subsurface impurities of fused silica on laser induced damage probability[J]. Infrared and Laser Engineering, 46, 0406002(2017).

    [14] Shi Feng, Wan Wen, Dai Yifan, . Effect of magnetorheological finishing on laser damage properties of fused silica[J]. Optics and Precision Engineering, 24, 2931-2937(2016).

    [15] Carr C W, Bude J D, DeMange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 82, 184304(2010).

    [16] Carr C W, Radousky H B, Rubenchik A M, et al. Localized dynamics during laser-induced damage in optical materials[J]. Physical Review Letters, 92, 087401(2004).

    [17] Demos S G, Raman R N, Negres R A. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses[J]. Optics Express, 21, 4875-4888(2013).

    [18] DeMange P, Negres R A, Raman R N, et al. Role of phase instabilities in the early response of bulk fused silica during laser-induced breakdown[J]. Physical Review B, 84, 054118(2011).

    [19] Zhu Chengyu, Liang Lingxi, Peng Ge, et al. Explosion plume on the exit surface of fused silica during UV laser-induced damage[J]. Results in Physics, 32, 105094(2022).

    [20] Liang Lingxi, Zhu Chengyu, Yuan Hang, et al. Study of the effects of stress wave behavior in laser-induced exit-surface damage of fused silica using time-resolved multi-polariscopic imaging[J]. Journal of Laser Applications, 33, 022018(2021).

    [21] Jiang Yong, Liu Hufeng, Zhang Fawang, et al. Influence of ejected SiO2 particles on the laser damage thresholds of fused silica[J]. Fusion Engineering and Design, 173, 112956(2021).

    [22] Su Rui, Xiang Meizhen, Chen Jun, et al. Molecular dynamics simulation of shock induced ejection on fused silica surface[J]. Journal of Applied Physics, 115, 193508(2014).

    [23] Tian Ye, Du Jincheng, Hu Dongxia, et al. Densification effects on porous silica: a molecular dynamics study[J]. Scripta Materialia, 149, 58-61(2018).

    [24] Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J]. Journal of Non-Crystalline Solids, 239, 16-48(1998).

    [25] Lu Pengfei, Wu Liyuan, Yang Yang, et al. Stable structure and optical properties of fused silica with NBOHC-E′ defect[J]. Chinese Physics B, 25, 086801(2016).

    [26] Feng Qingyi, Deng Hongxiang, Huang Sizhao, et al. Strong UV laser absorption source near 355 nm in fused silica and its origination[J]. Optics Express, 29, 31849-31858(2021).

    [27] Liu Hongjie, Wang Fengrui, Huang Jin, et al. Experimental study of 355 nm laser damage ignited by Fe and Ce impurities on fused silica surface[J]. Optical Materials, 95, 109231(2019).

    [28] Huang Jin, Wang Fengrui, Li Weihua, et al. Assessing the UV-pulse-laser-induced damage density of fused silica optics using photo-thermal absorption distribution probability curves[J]. Optics Letters, 47, 653-656(2022).

    [29] Bude J, Carr C W, Miller P E, et al. Particle damage sources for fused silica optics and their mitigation on high energy laser systems[J]. Optics Express, 25, 11414-11435(2017).

    [30] Suratwala T I, Miller P E, Bude J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 94, 416-428(2011).

    [31] Cross D A, Carr C W. Creation of high-fluence precursors by 351-nm laser exposure on SiO2 substrates[J]. Optical Engineering, 60, 031010(2020).

    [32] Zhu Deyan, Li Ping, Chai Xiangxu, et al. General design and experiment for separated final optics assembly on high energy laser system[J]. Optics & Laser Technology, 128, 106213(2020).

    [33] Carr C W, Cross D A, Norton M A, et al. The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair[J]. Optics Express, 19, A859-A864(2011).

    [34] Carr C W, Trenholme J B, Spaeth M L. Effect of temporal pulse shape on optical damage[J]. Applied Physics Letters, 90, 041110(2007).

    [35] Pryatel J A, Gourdin W H, Frieders S C, et al. Cleaning practices facilities f the National Ignition Facility (NIF)[C]Proceedings of the 9237, LaserInduced Damage in Optical Materials. 2014: 92372H.

    [36] Cheng Xiaofeng, Wang Hongbin, Miao Xinxiang, . Contamination control for high-power solid-state laser driver and improvement of cleanliness in slab amplifiers[J]. High Power Laser and Particle Beams, 25, 1147-1151(2013).

    [37] Li Yuhan, Miao Xinxiang, Fang Zhenhua, et al. Damage behaviors of silica microparticles on fused silica optics under 355 nm high fluence laser[J]. International Journal of Modern Physics B, 36, 2240068(2022).

    [38] Bien-Aimé K, Belin C, Gallais L, et al. Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm[J]. Optics Express, 17, 18703-18713(2009).

    [39] Huang Lin, Yan Hongwei, Yan Lianghong, et al. Improvement of the environmental stability of sol-gel silica anti-reflection coatings[J]. Journal of Sol-Gel Science and Technology, 101, 630-636(2022).

    [40] Negres R A, Cross D A, Liao Z M, et al. Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation[J]. Optics Express, 22, 3824-3844(2014).

    [41] Liao Z M, Miller C, Cross D A, et al. Analysis of cumulative probability of growth of damage sites at the National Ignition Facility[C]Proceedings of the SPIE 11910, LaserInduced Damage in Optical Materials 2021. 2021: 119100M.

    [42] Liao Z M, Carr C W, Cross D, et al. Damage perfmance of fused silica debris shield at the National Ignition Facility[C]Proceedings of the SPIE 11173, Laserinduced Damage in Optical Materials 2019. 2019: 111730Y.

    [43] Veinhard M, Bonville O, Courchinoux R, et al. Quantification of laser-induced damage growth using fractal analysis[J]. Optics Letters, 42, 5078-5081(2017).

    [44] Lacombe C, Hallo G, Sozet M, et al. Dealing with LMJ final optics damage: postprocessing models[C]Proceedings of the SPIE 11514, Laserinduced Damage in Optical Materials 2020. 2020: 115140G.

    [45] Huang Wanqing, Han Wei, Wang Fang, et al. Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm[J]. Chinese Physics Letters, 26, 017901(2009).

    [46] Cmont P, Houee C, Da Costa Fernes B, et al. Recycle loop deployed f the large optical components of Megajoule laser[C]Optical Design Fabrication 2019 (Freefm, OFT). 2019: JT5A. 9.

    [47] Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 69, 265-294(2016).

    [48] Ye Xin, Huang Jin, Liu Hongjie, et al. Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics[J]. Scientific Reports, 6, 31111(2016).

    [49] Mendez E, Nowak K M, Baker H J, et al. Localized CO2 laser damage repair of fused silica optics[J]. Applied Optics, 45, 5358-5367(2006).

    [50] Li Xibin, Lv Haibing, Xiang Xia, . Small size damage mitigation on fused silica surface with CO2 laser[J]. High Power Laser and Particle Beams, 22, 2209-2213(2010).

    [51] Matthews M J, Bass I L, Guss G M, et al. Downstream intensification effects associated with CO2 laser mitigation of fused silica[C]Proceedings of the SPIE 6720, LaserInduced Damage in Optical Materials. 2007: 67200A.

    [52] Bass I L, Guss G M, Nostr M J, et al. An improved method of mitigating laserinduced surface damage growth in fused silica using a rastered pulsed CO2 laser[C]Proceedings of the SPIE 7842, LaserInduced Damage in Optical Materials. 2010: 784220.

    [53] Trummer S, Larkin G, Kegelmeyer L, et al. Automated repair of laser damage on National Ignition Facility optics using machine learning[C]Proceedings of the SPIE 10805, LaserInduced Damage in Optical Materials 2018: 50th Anniversary Conference. 2018: 108050L.

    [54] Zhang Chuanchao, Zhang Lijuan, Jiang Xiaolong, et al. Influence of pulse length on heat affected zones of evaporatively-mitigated damages of fused silica optics by CO2 laser[J]. Optics and Lasers in Engineering, 125, 105857(2020).

    [55] Demos S G, Ehrmann P R, Qiu S R, et al. Dynamics of defects in Ce3+ doped silica affecting its performance as protective filter in ultraviolet high-power lasers[J]. Optics Express, 22, 28798-28809(2014).

    [56] Tian Ye, Han Wei, Yuan Xiaodong, et al. Structure and vibrations of cerium in silica glass from molecular dynamics simulations[J]. Journal of the American Ceramic Society, 104, 208-217(2021).

    [57] Zheng Tianran, Liu Hongjie, Wang Fang, et al. Design of laser beam dump with high laser-induced-damage threshold[J]. Optics & Laser Technology, 146, 107561(2022).

    [58] Fang Zhenhua, Chen Jing, Jiang Xiaolong, et al. Femtosecond laser modification device of fused quartz element composite repair method of its damage point: CN112608035B[P]. 20220607

    [59] Sun Laixi, Huang Jin, Shao Ting, et al. Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics[J]. Optics Express, 26, 18006-18018(2018).

    [60] Shao Ting, Shi Zhaohua, Sun Laixi, et al. Role of each step in the combined treatment of reactive ion etching and dynamic chemical etching for improving the laser-induced damage resistance of fused silica[J]. Optics Express, 29, 12365-12380(2021).

    [61] Sun Wenfeng, Xiang Xia, Li Bo, et al. A recycling strategy of ion beam removal and recoating of sol-gel film on fused silica surface[J]. Optik, 242, 167259(2021).

    [62] Jiang Xiaolong, Liao Wei, Li Bo, et al. Removal of antireflection sol-gel SiO2 coating based on Ar ion beam etching[J]. Fusion Engineering and Design, 156, 111578(2020).

    [63] Liu Taixiang, Yang Ke, Zhang Zhuo, et al. Hydrofluoric acid-based etching effect on surface pit, crack, and scratch and laser damage site of fused silica optics[J]. Optics Express, 27, 10705-10728(2019).

    Wanguo Zheng, Ye Tian, Wei Han, Xiangxu Chai, Xuewei Deng, Taixiang Liu, Wei Liao. Research progress on loading capability of high-power solid-state laser facilities[J]. High Power Laser and Particle Beams, 2023, 35(6): 061001
    Download Citation