• Chinese Journal of Lasers
  • Vol. 50, Issue 16, 1602307 (2023)
Liyun Wu1、2、3, Zhanyong Zhao2、3、*, and Peikang Bai2、3
Author Affiliations
  • 1Department of Mechanical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, Shanxi, China
  • 2School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, China
  • 3Shanxi Key Laboratory of Controlled Metal Solidification and Precision Manufacturing, Taiyuan 030051, Shanxi, China
  • show less
    DOI: 10.3788/CJL230838 Cite this Article Set citation alerts
    Liyun Wu, Zhanyong Zhao, Peikang Bai. Effect of GNPs Content on Microstructure and Strengthening Mechanism of GNPs/AlSi10Mg Composite Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2023, 50(16): 1602307 Copy Citation Text show less
    Morphology of raw materials. (a) Morphology of AlSi10Mg powder captured by scanning electron microscope (SEM);(b) morphology of GNPs captured by SEM
    Fig. 1. Morphology of raw materials. (a) Morphology of AlSi10Mg powder captured by scanning electron microscope (SEM);(b) morphology of GNPs captured by SEM
    Morphology and composition analysis of GNPs/AlSi10Mg composite powders. (a) SEM morphology of 0.1%GNPs/AlSi10Mg; (b) carbon element distribution map of 0.1%GNPs/AlSi10Mg; (c) SEM morphology of 0.3%GNPs/AlSi10Mg; (d) composition analysis of 0.3%GNPs/AlSi10Mg; (e) SEM morphology of 0.5%GNPs/AlSi10Mg; (f) composition analysis of 0.5%GNPs/AlSi10Mg
    Fig. 2. Morphology and composition analysis of GNPs/AlSi10Mg composite powders. (a) SEM morphology of 0.1%GNPs/AlSi10Mg; (b) carbon element distribution map of 0.1%GNPs/AlSi10Mg; (c) SEM morphology of 0.3%GNPs/AlSi10Mg; (d) composition analysis of 0.3%GNPs/AlSi10Mg; (e) SEM morphology of 0.5%GNPs/AlSi10Mg; (f) composition analysis of 0.5%GNPs/AlSi10Mg
    Size of tensile specimen. (a) Schematic diagram; (b) physical image
    Fig. 3. Size of tensile specimen. (a) Schematic diagram; (b) physical image
    EBSD inverse pole figure (IPF) maps, distributions of the grain size and the pole figures (PFs) of AlSi10Mg alloy and 0.5%GNPs/AlSi10Mg composite. (a)(c) AlSi10Mg alloy; (b)(d) 0.5%GNPs/AlSi10Mg composite
    Fig. 4. EBSD inverse pole figure (IPF) maps, distributions of the grain size and the pole figures (PFs) of AlSi10Mg alloy and 0.5%GNPs/AlSi10Mg composite. (a)(c) AlSi10Mg alloy; (b)(d) 0.5%GNPs/AlSi10Mg composite
    Grain boundary misorientation difference distribution images and proportion diagrams of HAGB of AlSi10Mg alloy and 0.5%GNPs/AlSi10Mg composite. (a)(c) AlSi10Mg alloy; (b)(d) 0.5%GNPs/AlSi10Mg composite
    Fig. 5. Grain boundary misorientation difference distribution images and proportion diagrams of HAGB of AlSi10Mg alloy and 0.5%GNPs/AlSi10Mg composite. (a)(c) AlSi10Mg alloy; (b)(d) 0.5%GNPs/AlSi10Mg composite
    Cross-sectional SEM morphology of GNPs/AlSi10Mg composites. (a)(b) AlSi10Mg alloy; (c)(d) 0.1%GNPs/AlSi10Mg composite; (e)(f) 0.3%GNPs/AlSi10Mg composite; (g)(h) 0.5%GNPs/AlSi10Mg composite
    Fig. 6. Cross-sectional SEM morphology of GNPs/AlSi10Mg composites. (a)(b) AlSi10Mg alloy; (c)(d) 0.1%GNPs/AlSi10Mg composite; (e)(f) 0.3%GNPs/AlSi10Mg composite; (g)(h) 0.5%GNPs/AlSi10Mg composite
    X-ray diffraction patterns and hardness histogram of AlSi10Mg alloy and GNPs/AlSi10Mg composites. (a) X-ray diffraction patterns; (b) hardness histogram
    Fig. 7. X-ray diffraction patterns and hardness histogram of AlSi10Mg alloy and GNPs/AlSi10Mg composites. (a) X-ray diffraction patterns; (b) hardness histogram
    Tensile properties of AlSi10Mg alloy and GNPs/AlSi10Mg composites. (a) Stress-strain curves; (b) tensile properties
    Fig. 8. Tensile properties of AlSi10Mg alloy and GNPs/AlSi10Mg composites. (a) Stress-strain curves; (b) tensile properties
    Fracture morphology of AlSi10Mg alloy and GNPs/AlSi10Mg composites
    Fig. 9. Fracture morphology of AlSi10Mg alloy and GNPs/AlSi10Mg composites
    Relationship between ultimate tensile strength and ductility
    Fig. 10. Relationship between ultimate tensile strength and ductility
    Schematic diagrams of the strengthening mechanism of graphene. (a) Before tensile experiment; (b) after tensile experiment
    Fig. 11. Schematic diagrams of the strengthening mechanism of graphene. (a) Before tensile experiment; (b) after tensile experiment
    ElementMass fraction /%
    Si10
    Mg0.45
    Cu0.1
    Ni0.05
    Fe0.55
    Mn0.45
    Ti0.15
    Sn0.05
    Pb0.05
    AlMargin
    Table 1. Chemical composition of AlSi10Mg powder
    Process parameterContent
    Laser power /W300
    Exposure time /μs140
    Spot size /μm70
    Layer thickness /μm30
    Point distance0.3
    AtmosphereArgon
    Table 2. Selective laser melting process parameters
    MaterialYield strength σ0.2 /MPaUltimate tensile strength /MPaElongation /%
    AlSi10Mg241±3383±49.8±0.21
    0.1%GNPs/AlSi10Mg254±5417±48.4±0.14
    0.3%GNPs/AlSi10Mg243±3370±57.3±0.32
    0.5%GNPs/AlSi10Mg150±3224±64.0±0.45
    Table 3. Tensile properties of AlSi10Mg alloy and GNPs/AlSi10Mg composites
    ElementAtomic fraction /%
    Point APoint BPoint CPoint D
    C72.5666.3165.8239.82
    Al23.3929.8530.2849.40
    Mg0.110.290.330.60
    Si3.943.553.5610.18
    Table 4. EDS analysis of different locations in the composites showed in Fig.9
    Liyun Wu, Zhanyong Zhao, Peikang Bai. Effect of GNPs Content on Microstructure and Strengthening Mechanism of GNPs/AlSi10Mg Composite Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2023, 50(16): 1602307
    Download Citation