
- Chinese Optics Letters
- Vol. 17, Issue 10, 101401 (2019)
Abstract
Erbium-doped fiber lasers (EDFLs) and erbium-doped fiber amplifiers (EDFAs) have been widely used in supercontinuum sources, remote sensing, and light detection and ranging (LIDAR)[
In this work, we studied the temperature dependence of absorption/emission cross sections of heavily Er-doped aluminosilicate glass ranging from 20°C to 140°C. Using the
Figure
Figure 1.Diagram of Stark splitting of
A high concentration of
An obvious self-absorption near the zero phonon line (∼1528 nm) can occur due to high concentrations of
The temperature dependence of the fluorescence lifetime of
Figure 2.Evolution of fluorescence lifetime of energy level
Temperature can affect the occupation distribution of the involved Stark levels and the transition probability of the stimulated ions, which can exhibit spectroscopically as a change of the absorption and emission cross section with temperature. The absorption spectrum was measured by a Lambda 950 UV-visible-near-IR (UV-VIS-NIR) spectrophotometer. Similarly, the thin sample was heated by a perforated copper block, which can allow the pump light to pass through. The absorption cross sections
Figure
Figure 3.Absorption cross sections in
The McCumber theory has proven to be an available way to obtain the emission cross section from absorption cross section at different temperatures[
Figure
Figure 4.Emission cross sections in
The change of the absorption cross section and emission cross section with temperature can be attributed to the change of the population of distribution on Stark sublevels with temperature. In thermal equilibrium disturbance, the population of Stark sublevels of Er ions follows Boltzmann’s law[
Figure 5.Evolution of normalized population of Stark sublevels in manifolds
An all-fiber laser cavity was built with a heating device, as shown in Fig.
Figure 6.Schematic diagram of all-fiber experiment setup.
As shown in Fig.
Figure 7.Measured output power versus different temperatures.
Figure 8.Temperature dependence of slope efficiency and laser threshold.
In order to deeply analyze the effect of temperature on EADF, the evolution of the threshold of pump power with temperature is depicted in Fig.
The stability of laser output power under high temperature conditions is very important in laser applications. In order to investigate the stability of the fiber laser at high temperatures, the EADF was heated at different given temperatures, and the output laser power was recorded ceaselessly. The temperature curve was set to a ladder, as shown in Fig.
Figure 9.Evolution of output power and temperature with heating time.
In conclusion, a heavily
References
[1] M. Lopez-Ripa, S. Jarabo, F. J. Salgado-Remacha. Opt. Lett., 44, 2016(2019).
[2] S. Cai, Z. Zhang, X. Chen. Opt. Commun., 439, 164(2019).
[4] S. Diaz. J. Lightw. Technol., 34, 4591(2016).
[6] S. Wu, X. H. Zhai, B. Y. Liu. Opt. Express, 27, 1142(2019).
[7] T. Yao, J. Ji, J. Nilsson. J. Lightw. Technol., 32, 429(2014).
[8] Y. Y. Fan, B. He, J. Zhou, J. T. Zheng, H. K. Liu, Y. R. Wei, J. X. Dong, Q. H. Lou. Opt. Express, 19, 15162(2011).
[9] J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, A. B. Grudinin. IEEE J. Quantum Electron., 39, 987(2003).
[11] K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Cheng,, A. Galvanauskas, W. Torruellas, Y. Chen. Proc. SPIE, 6102, 610206(2006).
[12] V. Kuhn, P. Webels, J. Neumann, D. Kracht. Opt. Express, 17, 18304(2009).
[13] G. Canat, J.-C. Mollier, Y. Jaouën, B. Dussardier. Opt. Lett., 30, 3030(2005).
[14] L. V. Kotov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, S. Fevrier, J. Lhermite, E. Cormier, M. Y. Koptev, E. A. Anashkina, S. V. Muraviev, A. V. Andrianov, A. V. Kim, M. E. Likhachev. Proc. SPIE, 8961, 89611L(2014).
[16] N. Kagi, A. Oyobe, K. Nakamura. J. Lightw. Technol., 9, 261(1991).
[17] A. Giaquinto, L. Mescia, G. Fornarelli, F. Prudenzano. Opt. Lett., 36, 142(2011).
[18] R. S. Quimby. J. Appl. Phys., 92, 180(2002).
[19] R. M. Martin, R. S. Quimby. J. Opt. Soc. Am. B., 23, 1770(2006).
[20] E. Desurvire, J. R. Simpon. Opt. Lett., 15, 547(1990).
[23] M. Z. Amin, K. K. Qureshi. Chin. Opt. Lett., 15, 010601(2017).
[24] F. Wang, Z. Q. Lin, C. Y. Shao, Q. L. Zhou, L. Zhang, M. Wang, D. P. Chen, G. J. Gao, S. K. Wang, C. L. Yu, L. L. Hu. Opt. Lett., 43, 2356(2018).
[25] W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel. IEEE J. Quantum Electron., 27, 1004(1991).
[26] P. L. Pernas, E. Cantelar. Physica Scripta, T118, 93(2005).
[29] S. Q. Xu, Z. M. Yang, S. X. Dai, J. J. Zhang, L. L. Hu, Z. H. Jiang. J. Rare Earth, 22, 3(2004).
[30] W. J. Miniscalco, R. S. Quimby. Opt. Lett., 16, 258(1991).
[31] D. A. Grukh, A. S. Kurkov, V. M. Paramonov, E. M. Dianov. Quantum Electron., 34, 579(2004).
[32] H. Li, Q. C. Zhao, S. D. Jiang, J. S. Ni, C. Wang. Chin. Opt. Lett., 17, 040603.
[33] J. A. Bebawi, I. Kandas, M. A. El-Osairy, M. H. Aly. Appl. Sci., 8, 1640(2018).

Set citation alerts for the article
Please enter your email address