• Acta Physica Sinica
  • Vol. 69, Issue 8, 080502-1 (2020)
Zhi-Gang Zheng1、2、*, Yun Zhai1、2、3, Xue-Bin Wang1、2, Hong-Bin Chen1、2, and Can Xu1、2、*
Author Affiliations
  • 1Institute of Systems Science, Huaqiao University, Xiamen 361021, China
  • 2College of Information Science and Engineering, Huaqiao University, Xiamen 361201, China
  • 3School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.7498/aps.69.20191968 Cite this Article
    Zhi-Gang Zheng, Yun Zhai, Xue-Bin Wang, Hong-Bin Chen, Can Xu. Synchronization of coupled phase oscillators: Order parameter theory[J]. Acta Physica Sinica, 2020, 69(8): 080502-1 Copy Citation Text show less

    Abstract

    Rhythmic behaviors, i.e. temporally periodic oscillations in a system, can be ubiquitously found in nature. Interactions among various rhythms can lead to self-organized behaviors and synchronizations. This mechanism is also responsible for many phenomena such as nonlinear waves, spatiotemporal patterns, and collective behaviors in populations emerging in complex systems. Mathematically different oscillations are described by limit-cycle oscillators (pacemakers) with different intrinsic frequencies, and the synchrony of these units can be described by the dynamics of coupled oscillators. Studies of microscopic dynamics reveal that the emergence of synchronization manifests itself as the dimension reduction of phase space, indicating that synchrony can be considered as no-equilibrium phase transition and can be described in terms of order parameters. The emergence of order parameters can be theoretically explored based on the synergetic theory, central manifold theorem and statistical physics. In this paper, we discuss the order-parameter theory of synchronization in terms of statistical physics and set up the dynamical equations of order parameters. We also apply this theory to studying the nonlinear dynamics and bifurcation of order parameters in several typical coupled oscillator systems.
    ${\dot \theta _i} = {\omega _i} + \left( {\sum\limits_{j = 1}^N {X({\theta _j})} } \right)Z({\theta _i}), $(1)

    View in Article

    ${\dot \theta _i} = {\omega _i} + \frac{K}{N}\sum\limits_{j = 1}^N {\sin ({\theta _j} - {\theta _i})} . $(2)

    View in Article

    ${\Omega _i} = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_0^T {{{\dot \theta }_i}(t){\rm{d}}t}. $(3)

    View in Article

    $z = R\exp ({\rm{i}}\varTheta ) = \frac{1}{N}\sum\limits_{j = 1}^N {\exp ({\rm{i}}{\theta _j})},$(4)

    View in Article

    ${\rm{d}}{\theta _i}/{\rm{d}}t = {\omega _i} + KR\sin (\varTheta - {\theta _i}). $(5)

    View in Article

    ${\rm{d}}{\phi _i}/{\rm{d}}t = {\omega _i} - \bar \omega - KR\sin {\phi _i}, $(6)

    View in Article

    $R{{\rm{e}}^{{\rm{i}}\varTheta }} = {{\rm{e}}^{{\rm{i}}\bar \omega t}}\int\nolimits_0^{2{\text{π}}} {\int\nolimits_{ - \infty }^\infty {{{\rm{e}}^{{\rm{i}}\phi }}P(\phi,\omega,t)g(\omega ){\rm{d}}} } \omega {\rm{d}}\phi, $(7)

    View in Article

    $\frac{{\partial P(\phi,\omega,t)}}{{\partial t}} \!=\! - \frac{\partial }{{\partial \phi }}\big\{ [\omega - \bar \omega - KR\sin \phi ]P(\phi,\omega,t) \big\}. $(8)

    View in Article

    $P(\phi ) = {P_{\rm{s}}}(\phi ) + {P_{{\rm{as}}}}(\phi ). $(9)

    View in Article

    $\begin{split} &{P_{\rm{s}}}(\phi ) = g(\omega )\left| {\frac{{{\rm{d}}\omega }}{{{\rm{d}}\phi }}} \right| = KRg(\bar \omega + KR\sin \phi )\cos \phi,\\ & \qquad \qquad \phi \in \left[ { - \frac{{\text{π}}}{2},\frac{{\text{π}}}{2}} \right]; \end{split}$(10)

    View in Article

    $p(\phi,\omega ) = \frac{{\sqrt {{{(\omega - \bar \omega )}^2} - {{(KR)}^2}} }}{{2{\text{π}}\left| {\omega - \bar \omega - KR\sin \phi } \right|}}, $(11)

    View in Article

    ${P_{{\rm{as}}}}(\phi) = \int\nolimits_{| {\omega - \bar \omega } | > KR} {g(\omega )p(\phi,\omega ){\rm{d}}\omega } .$(12)

    View in Article

    ${P_{{\rm{as}}}}(\phi ) = \int_{KR}^\infty {\frac{{g(\bar \omega + x)x\sqrt {{x^2} - {{(KR)}^2}} }}{{{\text{π}}[{x^2} - {{(KR\sin \phi )}^2}]}}{\rm{d}}x}, $(13)

    View in Article

    $\begin{split} R{{\rm{e}}^{{\rm{i}}\varTheta }}\; &= \int_{ - {\text{π}}}^{\text{π}} {{{\rm{e}}^{{\rm{i}}(\phi + \bar \omega t)}}P(\phi ){\rm{d}}\phi } \\ &= \int_{ - {\text{π}}}^{\text{π}} {{{\rm{e}}^{{\rm{i}}\phi + {\rm{i}}\bar \omega t}}[{P_{\rm{s}}}(\phi ) + {P_{{\rm{as}}}}(\phi )]{\rm{d}}\phi } .\end{split}$(14)

    View in Article

    $R = KR\int_{ - \frac{{\text{π}}}{2}}^{\frac{{\text{π}}}{2}} {{{\cos }^2}\phi g(\bar \omega + KR\sin \phi ){\rm{d}}\phi }, $(15)

    View in Article

    $0 = KR\int_{ - \frac{{\text{π}}}{2}}^{\frac{{\text{π}}}{2}} {\cos \phi \sin \phi g(\bar \omega + KR\sin \phi ){\rm{d}}\phi }. $(16)

    View in Article

    $g(\bar \omega + KR\sin \phi ) \approx g(\bar \omega ) + \frac{{g''(\bar \omega )}}{2}{(KR)^2}{\sin ^2}\phi + O({R^4}),$(17)

    View in Article

    $1 = \frac{{{\text{π}}K}}{2}g(\bar \omega ) - \frac{1}{{16}}{\text{π}}{K^3}{R^3}g''(\omega ) + O({R^4}).$(18)

    View in Article

    ${K_{\rm{c}}} = 2/[{\text{π}}g(\bar \omega )].$(19)

    View in Article

    $R \approx \sqrt {\frac{{8g(\bar \omega )(K - {K_{\rm{c}}})}}{{g''(\bar \omega ){K^3}}}} . $(20)

    View in Article

    $\dot {{x}} = {{A}}{{x}} + {{B}}({{x}}), $(21)

    View in Article

    $\tilde {{A}} = {{{T}}^{ - 1}}{{AT}}, $(22)

    View in Article

    $\tilde {{A}} = \left( {\begin{array}{*{20}{c}} {{{{\lambda}} ^u}}&{\bf{0}} \\ {\bf{0}}&{{{{\lambda}} ^s}} \end{array}} \right), $(23)

    View in Article

    $\dot {{u}} = {\lambda ^u}{{u}} + {{{B}}^u}({{u}},s), \tag{24a}$()

    View in Article

    $\dot {{s}} = {{{\lambda}} ^s}{{s}} + {{{B}}^s}({{u}},{{s}}), \tag{24b}$()

    View in Article

    $\dot {{u}} = {\lambda ^u}{{u}} + {{{B}}^u}({{u}},{{s}}({{u}})). $(25)

    View in Article

    ${\dot \theta _j}(t) = F({{\alpha}},{\theta _j},{{\beta}},{\gamma _j}) + {\xi _j}(t),$(26)

    View in Article

    ${\alpha _n} = \frac{1}{N}\mathop \sum \limits_{j = 1}^N \exp ({\rm{i}}n{\theta _j}).$(27)

    View in Article

    $ \dfrac{\partial \rho}{\partial t} = - \dfrac{\partial (\rho v)}{\partial \theta} + D \dfrac{{\partial ^2}\rho }{\partial {\theta ^2}}, $(28)

    View in Article

    $ \dfrac{\partial \rho }{\partial t} + \dfrac{\partial (\rho v)}{\partial \theta} = 0. $(29)

    View in Article

    $\rho \left( {\theta,t} \right) = {\sum\limits _i}\rho \left( {{\omega _i},\theta,t} \right) = \int\limits \rho \left( {\omega,\theta,t} \right){\rm{g}}\left( \omega \right){\rm{d}}\omega,$ (30)

    View in Article

    ${\alpha _n} = \int {\exp ({\rm{i}}n\theta )\rho (\theta,t)} {\rm{d}}\theta . $(31)

    View in Article

    $\begin{split} {\alpha _n} ={}&\int {{\alpha _n}(\omega,t)g(\omega ){\rm{d}}\omega } \\ ={} & \int {\exp ({\rm{i}}n\theta )\rho (\omega,\theta,t)g(\omega ){\rm{d}}\omega } {\rm{d}}\theta. \end{split} $(32)

    View in Article

    ${\dot \alpha _n} = \frac{{{\rm{i}}n}}{N}\mathop \sum \limits_{j = 1}^N \exp ({\rm{i}}n{\theta _j})F({{\alpha}},{\theta _j},{{\beta}} ). $(33)

    View in Article

    $F({{\alpha}},{\theta _j},{{\beta}} ) = \mathop \sum \limits_{k = - \infty }^\infty {f_k}({{\alpha}},{{\beta}} )\exp ({\rm{i}}k{\theta _j}),$(34)

    View in Article

    $ {\dot \alpha _n} = {\rm{i}}n\mathop \sum \limits_{k = - \infty }^\infty {f_k}(\alpha,\beta ){\alpha _{k + n}},~~n=1,2,\cdots $ (35)

    View in Article

    $\begin{split} F({{\alpha }},\theta ) ={}& {f_1}({{\alpha}} )\exp ({\rm{i}}\theta ) + {f_{ - 1}}({{\alpha}} )\exp ( - {\rm{i}}\theta ) \\ & + {f_0}({{\alpha}} ), \end{split}$(36)

    View in Article

    ${\dot \alpha _n} = {\rm{i}}n[{f_1}({{\alpha}} ){\alpha _{n + 1}} + {\bar f_1}({{\alpha}} ){\alpha _{n - 1}} + {f_0}({{\alpha}} ){\alpha _n}],$(37)

    View in Article

    ${\alpha _n} = G({\alpha _1},n) = \alpha _1^n. $(38)

    View in Article

    ${\dot \alpha _1} = {\rm{i[}}{f_1}({\alpha _1})\alpha _1^2 + {\bar f_1}({\alpha _1}) + {f_0}({\alpha _1}){\alpha _1}]. $(39)

    View in Article

    $\rho (\theta,t) = \frac{1}{{{\rm{2{\text{π}} }}}}\left[ {1 + \sum\limits_{n = 1}^\infty {\left( {{{\bar \alpha }_n}(t){{\rm{e}}^{{\rm{i}}n\theta }} + {\alpha _n}(t){{\rm{e}}^{ - {\rm{i}}n\theta }}} \right)} } \right]. $(40)

    View in Article

    ${\alpha _n}(t) = \alpha _1^n(t),\;\;{\bar \alpha _n}(t) = \bar \alpha _1^n(t). $(41)

    View in Article

    $\begin{split} \rho (\theta,t) \!=\!& \frac{1}{{2{\text{π}}}}\bigg\{1 \!+\! \sum\limits_{n = 1}^\infty \big[\bar \alpha _1^n(t)\exp ({\rm{i}}n\theta) \\ & \!+\! \alpha _1^n(t)\exp ( - {\rm{i}}n\theta )\big] \bigg\}, \end{split}$(42)

    View in Article

    $\rho (\theta,t) = \frac{1}{{2{\text{π}}}}\frac{{1 - {r^2}}}{{1 - 2r\cos (\theta - \varTheta ) + {r^2}}}, $(43)

    View in Article

    ${\dot \alpha _n} = {\rm{i}}n\mathop \sum \limits_{j = - \infty }^\infty {f_j}\left( {{{\alpha}},{{\beta}},\omega } \right){\alpha _{j + n}}(\omega,t). $(44)

    View in Article

    ${\alpha _n}(\omega,t) = \alpha _1^n(\omega,t)$(45)

    View in Article

    ${\alpha _1}(t) = \int {{\alpha _1}(\omega,t)g(\omega ){\rm{d}}\omega }. $(46)

    View in Article

    $ F\left( z \right) = \frac{{az + b}}{{cz + d}},~a,b,c,d \in {\mathbb{C}},~ad - bc \ne 0 $ (47)

    View in Article

    $\begin{split} M\left( {{{\mathbb{C}}_\infty }} \right) ={}& \Big\{ F:{{\mathbb{C}}_\infty } \to {{\mathbb{C}}_\infty }\Big|F(z) \!=\! \frac{{az + b}}{{cz + d}},\\ &~~~ad - bc\! \ne \!0 \Big\}. \end{split}$ (48)

    View in Article

    ${\dot \theta _j} = f\exp ({\rm{i}}{\theta _j}) + g + \bar f\exp ( - {\rm{i}}{\theta _j}),$(49)

    View in Article

    $\exp \left[ {{\rm{i}}{\theta _j}(t)} \right] = {M_t}\left[ {\exp ({\rm{i}}{\varphi _j})} \right], $(50)

    View in Article

    ${M_t}(w) = \frac{{\exp \left[ {{\rm{i}}\psi (t)} \right]w + \alpha (t)}}{{1 + \bar \alpha (t)\exp \left[ {{\rm{i}}\psi (t)} \right]w}}, $(51)

    View in Article

    ${\theta _j}(t) = - {\rm{i}}\ln {M_t}\left( {\exp \left[ {{\rm{i}}{\varphi _j}(t)} \right]} \right), $(52)

    View in Article

    $ \begin{split} {{\dot \theta }_j}(t)\; & = - {\rm{i}}\frac{1}{{{M_t}\left[ {\exp ({\rm{i}}{\varphi _j})} \right]}}\frac{{{\rm{d}}{M_t}\left[ {\exp ({\rm{i}}{\varphi _j})} \right]}}{{{\rm{d}}t}} \\ & = R\exp ({\rm{i}}{\varphi _j}) + \frac{{\dot \psi + {\rm{i}}\bar \alpha \dot \alpha - \alpha ({\rm{i}}{\dot{ \bar \alpha}} - \bar \alpha \dot \psi )}}{{1 - |\alpha {|^2}}} \\ &\quad + \bar R{{\exp (-{\rm{i}}{\varphi _j})}}, \end{split} $(53)

    View in Article

    $R \equiv \frac{{{\rm{i}}{\dot {\bar \alpha }}- \bar \alpha \dot \psi }}{{1 - |\alpha {|^2}}}, $(54)

    View in Article

    $f = R = \frac{{{\rm{i}}{\dot {\bar {\alpha}}} - { {\bar\alpha {\dot \psi}}} }}{{1 - |\alpha {|^2}}},\tag{55a}$()

    View in Article

    $\;\;g = \frac{{\dot \psi + {\rm{i}}\bar \alpha \dot \alpha - \alpha ({\rm{i}}{\dot {\bar {\alpha }}}- \bar \alpha \dot \psi )}}{{1 - |\alpha {|^2}}}. \tag{55b}$()

    View in Article

    $\begin{split} & \dot \alpha = {\rm{i}}(f{\alpha ^2} + g\alpha + \bar f), \\ & \dot \psi = f\alpha + g + \bar f\bar \alpha, \end{split} $(56)

    View in Article

    $\begin{split}{\alpha _1}(t)\; & = \frac{1}{N}\mathop \sum \limits_{j = 1}^N \exp \left[ {{\rm{i}}{\theta _j}(t)} \right]\\ & = \frac{1}{N}\mathop \sum \limits_{j = 1}^N \frac{{\exp \left[ {{\rm{i}}\psi (t)} \right]\exp ({\rm{i}}{\varphi _j}) + \alpha (t)}}{{1 + \bar \alpha (t)\exp \left[ {{\rm{i}}\psi (t)} \right]\exp ({\rm{i}}{\varphi _j})}}, \end{split}$(57)

    View in Article

    ${\alpha _1}(t) = \alpha (t)(1 + I), $(58)

    View in Article

    $I = \frac{{1 - |\alpha (t){|^{ - 2}}}}{{1 \pm {{\left( {\bar \alpha (t)\exp \left[ {{\rm{i}}\psi (t)} \right]} \right)}^{ - N}}}}, $(59)

    View in Article

    $\begin{split} & \dot x = - uy + {\mathop{\rm Im}\nolimits} f(1 - {x^2} - {y^2}),\\ & \dot y = ux + {\mathop{\rm Re}\nolimits} f(1 - {x^2} - {y^2}),\\ & \dot \psi = u, \end{split}$(60)

    View in Article

    $ z\left( t \right) = {N^{ - 1}}\sum\limits_{j = 1}^N \exp \left( {{\rm{i}}{\theta _j}} \right) = \displaystyle\int\nolimits {\alpha _1}\left( {\omega, t} \right)g\left( \omega \right){\rm{d}}\omega $()

    View in Article

    ${f_1} \equiv - Kz/(2{\rm{i)}},~~{\rm{ }}{\bar f_1} \equiv Kz/(2{\rm{i)}},~~{\rm{ }}{f_0} \equiv \omega,$(61)

    View in Article

    ${\dot \alpha _1}(\omega,t) = [2{\rm{i}}\omega {\alpha _1}(\omega,t) + Kz(t) - K\bar z(t)\alpha _1^2(\omega,t)]/2, $(62)

    View in Article

    $g(\omega ) = 1/[{\text{π}}({\omega ^2} + 1)], $(63)

    View in Article

    $z(t) = \int_{ - \infty }^\infty {\frac{{{\alpha _1}(\omega,t){\rm{d}}\omega }}{{{\text{π}}({\omega ^2} + 1)}}} .$(64)

    View in Article

    $\dot z = z(K - 2 - K|z{|^2})/2, $(65)

    View in Article

    $|z| = \sqrt {(K - {K_{\rm{c}}})/K} . $(66)

    View in Article

    $\frac{{\partial \phi (x,t)}}{{\partial t}} = \omega - \int_{{\text{π}}}^{\text{π}} {G(\Delta x)\sin (\Delta \phi + \alpha ){\rm{d}}x'}, $(67)

    View in Article

    $ \displaystyle\int\nolimits_0^\infty G\left( x \right){\rm{d}}x = 1, G\left( { - x} \right) = G\left( x \right). $()

    View in Article

    $\frac{{\partial f}}{{\partial t}} + \frac{\partial }{{\partial \phi }}(vf) = 0, $(68)

    View in Article

    $\begin{split} & v(x,t) = \omega \,- \\ & \!\int {{\rm{d}}x'G(\Delta x)\int_{{\text{π}}}^{\text{π}} {{\rm{d}}\phi ' \sin (\Delta \phi + \alpha )f(x',\phi ',t)} }. \end{split} $(69)

    View in Article

    $\begin{split} \; & Z\equiv R(x,t)\exp \left[ {{\rm{i}}\Phi (x,t)} \right]\\ =\;& \int {{\rm{d}}x'G(x - x')\int_{{\text{π}}}^{\text{π}} {{\rm{d}}\phi \exp \left[ {{\rm{i}}\phi (x')} \right]f(x',\phi ',t)} } .\end{split}$(70)

    View in Article

    $\begin{split}v(x,t) =\; & \omega - \frac{1}{{2{\rm{i}}}}\left(\bar Z(x,t)\exp \left[ {{\rm{i}}(\phi + \alpha )} \right] \right.\\ & \left. - Z(x,t)\exp \left[{ - {\rm{i}}(\phi + \alpha )}\right] \right). \end{split}$(71)

    View in Article

    $\begin{split} f(x,\phi,t) =\; & \frac{1}{{2{\text{π}}}}\bigg\{1 + \sum\limits_{n = 1}^\infty \left[{h_n}(x,t)\exp ({\rm{i}}n\phi )\right.\bigg. \\ & \bigg.\left.+ {{\bar h}_n}(x,t)\exp ( - {\rm{i}}n\phi ) \right] \bigg\}, \end{split}$(72)

    View in Article

    ${h_n}(x,t) = {h^n}(x,t),\;{\bar h_n}(x,t) = {\bar h^n}(x,t), $(73)

    View in Article

    $\begin{split} f(x,\phi,t) =\;& \frac{1}{{2{\text{π}}}}\bigg\{1 + \sum\limits_{n = 1}^\infty \big[{h^n}(x,t)\exp ({\rm{i}}n\phi ) \\ & + {\bar h^n}(x,t)\exp ( - {\rm{i}}n\phi )\big]\bigg\}. \end{split}$(74)

    View in Article

    $\frac{{\partial h}}{{\partial t}} = - {\rm{i}}\omega h + \frac{1}{2}[\bar Z\exp ({\rm{i}}\alpha ) - Z\exp ( - {\rm{i}}\alpha ){h^2}]. $(75)

    View in Article

    $Z(x,t) = \int {{\rm{d}}x'G(x - x')\bar h(x',t)} . $(76)

    View in Article

    $f(\phi )\sim \sum\limits_{n = - \infty }^\infty {{h^n}(x)\exp ({\rm{i}}n\phi )} .$(77)

    View in Article

    $f(\phi ) = \frac{{1 - |h{|^2}}}{{2{\text{π}}[1 - 2|h|\cos (\phi - \arg h) + |h{|^2}}}, $(78)

    View in Article

    $h\left( {x, t} \right) =\int \nolimits_{ - {\text{π}}}^{\text{π}} {\rm{d}}\phi f\left( {x, \phi, t} \right){\rm{exp}}\left( {{\rm{i}}\phi } \right).$()

    View in Article

    ${\dot \theta _k} = \omega + \frac{1}{N}\sum\limits_{j = 1}^N {h({\theta _j} - {\theta _k})}, $(79)

    View in Article

    ${\dot \theta _k} = \omega + \sum\nolimits_n {{h_n}{\alpha _n}\exp ( - {\rm{i}}n{\theta _k})}, $(80)

    View in Article

    ${\dot \theta _k} = \omega + \operatorname{Im} [H(t)\exp ( - {\rm{i}}l{\theta _k})], $(81)

    View in Article

    $\frac{{{\rm{d}}[\exp ({\rm{i}}l{\theta _k})]}}{{{\rm{d}}t}} = {\rm{i}}l\exp ({\rm{i}}l{\theta _k})\omega + \frac{l}{2}[H - \bar H\exp ({\rm{i}}2l{\theta _k})]. $(82)

    View in Article

    $\exp ({\rm{i}}l{\theta _k}) = \frac{{\alpha (t) + \exp ({\rm{i}}{\varphi _k})}}{{1 + \bar \alpha (t)\exp ({\rm{i}}{\varphi _k})}}, $(83)

    View in Article

    $\begin{split} & \dot \alpha = l({\mathop{\rm i}\nolimits} \omega \alpha + H/2 - \bar H{\alpha ^2}/2),\\ & {{\dot \varphi }_k} = l\{ \omega + {\mathop{\rm Im}\nolimits} [H(t)\bar \alpha ]\}, \end{split}$(84)

    View in Article

    ${M_l}:\exp ({\rm{i}}l{\theta _k}) = \frac{{\alpha + \exp [{\rm{i}}(\varphi _k^0 + \psi )]}}{{1 + \bar \alpha \exp [{\rm{i}}(\varphi _k^0 + \psi )]}}, $(85)

    View in Article

    ${\dot \theta _k} = \omega + \frac{1}{{{N^2}}}\sum\limits_{i,j = 1}^N {\sin ({\theta _i} + {\theta _j} - 2{\theta _k})},$(86)

    View in Article

    ${\dot \theta _k} = \omega + \frac{1}{N}\sum\limits_{j = 1}^N {\sin [2({\theta _j} - {\theta _k} + \gamma )]}, $(87)

    View in Article

    Zhi-Gang Zheng, Yun Zhai, Xue-Bin Wang, Hong-Bin Chen, Can Xu. Synchronization of coupled phase oscillators: Order parameter theory[J]. Acta Physica Sinica, 2020, 69(8): 080502-1
    Download Citation