• Advanced Photonics
  • Vol. 2, Issue 4, 046003 (2020)
Minwoo Jung1、*, Ran G. Gladstone2, and Gennady Shvets2
Author Affiliations
  • 1Cornell University, Department of Physics, Ithaca, New York, United States
  • 2Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
  • show less
    DOI: 10.1117/1.AP.2.4.046003 Cite this Article Set citation alerts
    Minwoo Jung, Ran G. Gladstone, Gennady Shvets. Nanopolaritonic second-order topological insulator based on graphene plasmons[J]. Advanced Photonics, 2020, 2(4): 046003 Copy Citation Text show less
    References

    [1] S. S. Sunku et al. Photonic crystals for nano-light in moiré graphene superlattices. Science, 362, 1153-1156(2018).

    [2] X. Lin et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl. Acad. Sci. U. S. A., 114, 6717-6721(2017).

    [3] A. Woessner et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photonics, 11, 421-424(2017). https://doi.org/10.1038/nphoton.2017.98

    [4] M. B. Lundeberg et al. Tuning quantum nonlocal effects in graphene plasmonics. Science, 357, 187-191(2017).

    [5] D. A. Iranzo et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science, 360, 291-295(2018).

    [6] J. Chen et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77-81(2012).

    [7] Z. Fei et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82-85(2012).

    [8] A. Woessner et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater., 14, 421-425(2015).

    [9] P. Alonso-Gonzalez et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol., 12, 31-35(2017).

    [10] G. X. Ni et al. Fundamental limits to graphene plasmonics. Nature, 557, 530-533(2018).

    [11] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [12] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [13] C. He et al. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl. Acad. Sci. U. S. A., 113, 4924-4928(2016).

    [14] K. Lai et al. Experimental realization of a reflections-free compact delay line based on a photonic topological insulator. Sci. Rep., 6, 28453(2016).

    [15] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763-773(2017).

    [16] M. A. Gorlach et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun., 9, 909(2018).

    [17] F. Gao et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys., 14, 140-144(2018).

    [18] D. Jin et al. Infrared topological plasmons in graphene. Phys. Rev. Lett., 118, 245301(2017).

    [19] D. Pan et al. Topologically protected Dirac plasmons in a graphene superlattice. Nat. Commun., 8, 1243(2017).

    [20] B. S. Jessen et al. Lithographic band structure engineering of graphene. Nat. Nanotechnol., 14, 340-346(2019).

    [21] M. Hafezi et al. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [22] T. Ma et al. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett., 114, 127401(2015).

    [23] L. Ju et al. Topological valley transport at bilayer graphene domain walls. Nature, 520, 650-655(2015).

    [24] T. Ma, G. Shvets. All-Si valley-hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [25] J. Lu et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys., 13, 369-374(2017).

    [26] L.-H. Wu, X. Hu. Topological properties of electrons in honeycomb lattice with detuned hopping energy. Sci. Rep., 6, 24347(2016).

    [27] L.-H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [28] R. Süsstrunk, S. D. Huber. Classification of topological phonons in linear mechanical metamaterials. Proc. Natl. Acad. Sci. U. S. A., 113, E4767-E4775(2016).

    [29] P. Qiu et al. Topologically protected edge states in graphene plasmonic crystals. Opt. Express, 25, 22587-22594(2017).

    [30] P. Qiu et al. Pseudospin dependent one-way transmission in graphene-based topological plasmonic crystals. Nano. Res. Lett., 13, 113(2018).

    [31] M. Jung, Z. Fan, G. Shvets. Midinfrared plasmonic valleytronics in metagate-tuned graphene. Phys. Rev. Lett., 121, 086807(2018).

    [32] L. Xiong et al. Photonic crystal for graphene plasmons. Nat. Commun., 10, 4780(2019).

    [33] C.-Y. Hou, C. Chamon, C. Mudry. Electron fractionalization in two-dimensional graphenelike structures. Phys. Rev. Lett., 98, 186809(2007).

    [34] J. Noh et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics, 12, 408-415(2018).

    [35] W. A. Benalcazar, T. Li, T. L. Hughes. Quantization of fractional corner charge in cn-symmetric higher-order topological crystalline insulators. Phys. Rev. B, 99, 245151(2019).

    [36] W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Quantized electric multipole insulators. Science, 357, 61-66(2017).

    [37] W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B, 96, 245115(2017).

    [38] C. W. Peterson et al. A quantized microwave quadrupole insulator with topologically protected corner states. Nature, 555, 346-350(2018).

    [39] M. Serra-Garcia et al. Observation of a phononic quadrupole topological insulator. Nature, 555, 342-345(2018).

    [40] F. Schindler et al. Higher-order topological insulators. Sci. Adv., 4, eaat0346(2018).

    [41] H. Xue et al. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater., 18, 108-112(2019).

    [42] X. Ni et al. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater., 18, 113-120(2019).

    [43] S. Mittal et al. Photonic quadrupole topological phases. Nat. Photonics, 13, 692-696(2019).

    [44] M. Jablan, H. Buljan, M. Soljacic. Plasmonics in graphene at infrared frequencies. Phys. Rev. B, 80, 245435(2009).

    [45] D. K. Efetov, P. Kim. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett., 105, 256805(2010).

    [46] R. J. G. L. Yu et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl. Acad. Sci. U. S. A., 110, 3282-3286(2013).

    [47] I. Torre et al. Lippmann–Schwinger theory for two-dimensional plasmon scattering. Phys. Rev. B, 96, 035433(2017).

    [48] C. Brendel et al. Pseudomagnetic fields for sound at the nanoscale. Proc. Natl. Acad. Sci. U. S. A., 114, E3390-E3395(2017).

    [49] Z. Fan et al. Electrically defined topological interface states of graphene surface plasmons based on a gate-tunable quantum Bragg grating. Nanophotonics, 8, 1417-1431(2019).

    CLP Journals

    [1] Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan. Optical topological lattices of Bloch-type skyrmion and meron topologies[J]. Photonics Research, 2022, 10(4): 947

    [2] Bojian Shi, Yongyin Cao, Tongtong Zhu, Hang Li, Yanxia Zhang, Rui Feng, Fangkui Sun, Weiqiang Ding. Multiparticle resonant optical sorting using a topological photonic structure[J]. Photonics Research, 2022, 10(2): 297

    Minwoo Jung, Ran G. Gladstone, Gennady Shvets. Nanopolaritonic second-order topological insulator based on graphene plasmons[J]. Advanced Photonics, 2020, 2(4): 046003
    Download Citation