• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 18, Issue 4, 698 (2020)
HU Fangzhou11、2, YOU Bo1、*, ZHAO Kun2、3, LI Zhuoran3, DING Yanhui3, ZHANG Xi4, and LIU Yong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.11805/tkyda2018373 Cite this Article
    HU Fangzhou1, YOU Bo, ZHAO Kun, LI Zhuoran, DING Yanhui, ZHANG Xi, LIU Yong. Classification analysis for Alzheimer’s Disease based on human brainnetome atlas[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(4): 698 Copy Citation Text show less
    References

    [1] BRAAK H,BRAAK E,BOHL J,et al. Evolution of Alzheimer's disease related cortical lesions[J]. Journal of Neural Transmission Supplementum, 1998(54):97-106.

    [2] THOMPSON P M,MOUSSAI J,ZOHOORI S,et al. Cortical variability and asymmetry in normal aging and Alzheimer's disease[J]. Cerebral Cortex, 1998,8(6):492-509.

    [3] WHITWELL J L,PRZYBELSKI S A,WEIGAND S D,et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease[J]. Brain, 2007(130):1777-1786.

    [4] KLOPPEL S,STONNINGTON C M,CHU C, et al. Automatic classification of MR scans in Alzheimer's disease[J]. Brain, 2008(131):681-689.

    [5] CASANOVA R,WHITLOW C T,WAGNER B,et al. High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization[J]. Frontiers in Neuroinformatics, 2011,5(22):1-9.

    [6] HINRICHS C,SINGH V,MUKHERJEE L,et al. Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset[J]. NeuroImage, 2009,48(1):138-149.

    [7] TERMENON M,GRANA M. A two stage sequential ensemble applied to the classification of Alzheimer's disease based on MRI features[J]. Neural Processing Letters, 2012,35(1):1-12.

    [8] PLANT C,TEIPEL S J,OSWALD A,et al. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease[J]. NeuroImage, 2010,50(1):162-174.

    [9] MOLLER C,PIJNENBURG Y A,VAN DER FLIER W M,et al. Alzheimer disease and behavioral variant Frontotemporal Dementia:automatic classification based on cortical atrophy for single-subject diagnosis[J]. Radiology, 2016,279(3):838-848.

    [10] LIU X,TOSUN D,WEINER M W,et al. Locally linear embedding(LLE) for MRI based Alzheimer's disease classification[J]. NeuroImage, 2013(83):148-157.

    [11] SALVATORE C,CERASA A,BATTISTA P,et al. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach[J]. Frontiers in Neuroscience, 2015(9):307-319.

    [12] BEHESHTI I,DEMIREL H,NEUROIMAGING A S D. Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease[J]. Computers in Biology and Medicine, 2015,64(1):208-216.

    [13] WANG L,BEG F,RATNANATHER T,et al. Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type[J]. IEEE Transactions on Medical Imaging, 2007,26(4):462-470.

    [14] LI S,SHI F,PU F,et al. Hippocampal shape analysis of Alzheimer disease based on machine learning methods[J]. AJNR American Journal of Neuroradiology, 2007,28(7):1339-1345.

    [15] GERARDIN E,CHETELAT G,CHUPIN M,et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging[J]. NeuroImage, 2009,47(4):1476-1486.

    [16] SHEN K K,FRIPP J,MERIAUDEAU F,et al. Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models[J]. NeuroImage, 2012,59(3):2155-2166.

    [17] SORENSEN L,IGEL C,LIV HANSEN N,et al. Early detection of Alzheimer's disease using MRI hippocampal texture[J]. Human Brain Mapping, 2016,37(3):1148-1161.

    [18] RATHORE S,HABES M,IFTIKHAR M A,et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[J]. NeuroImage, 2017(155):530-548.

    [19] MAGNIN B,MESROB L,KINKINGNEHUN S,et al. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI[J]. Neuroradiology, 2009,51(2):73-83.

    [20] FAN L,LI H,ZHUO J,et al. The human brainnetome atlas:a new brain atlas based on connectional architecture[J]. Cerebral Cortex, 2016,26(8):3508-3526.

    [21] ROZYCKI M,SATTERTHWAITE T D,KOUTSOULERIS N,et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals[J]. Schizophrenia Bull, 2018,44(5):1035-1044.

    [22] SCHOLKOPF B,SMOLA A J. Learning with kernels:support vector machines,regularization,optimization,and beyond[M]. Cambridge,USA:MIT Press, 2001.

    [23] CORTES C,VAPNIK V. Support-Vector Networks[J]. Machine Learning, 1995,20(3):273-297.

    [24] FENG F,WANG P,ZHAO K,et al. Radiomic features of hippocampal subregions in Alzheimer's disease and amnestic mild cognitive impairment[J]. Frontiers in Aging Neuroscience, 2018(10):290-299.

    [26] TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1996,58(1):267-288.

    HU Fangzhou1, YOU Bo, ZHAO Kun, LI Zhuoran, DING Yanhui, ZHANG Xi, LIU Yong. Classification analysis for Alzheimer’s Disease based on human brainnetome atlas[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(4): 698
    Download Citation