• Acta Photonica Sinica
  • Vol. 48, Issue 10, 1005001 (2019)
[in Chinese]*, [in Chinese], [in Chinese], and WALI Faiz
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20194810.1005001 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], WALI Faiz. Fabrication of X-ray Absorption Gratings by Free Settling of Bismuth Nanoparticles[J]. Acta Photonica Sinica, 2019, 48(10): 1005001 Copy Citation Text show less
    References

    [1] HERZEN J, DONATH T, BECKMANN F, et al. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source[J]. Review of Scientific Instruments, 2011, 82(11): 113711.

    [2] ARBOLEDA C, WANG Z, KOEHLER T, et al. Sensitivity-based optimization for the design of a grating interferometer for clinical X-ray phase contrast mammography[J]. Optics Express, 2017, 25(6): 6349-6364.

    [3] XIA Tian, ZHANG Xue-long, MA Jun-shan, et al. Effect of spatial coherence and in incident X-ray photon energies on clinical X-ray in-line phase-contrast imaging[J]. Acta Photonica Sinica, 2011, 40(4): 627-635.

    [4] ZHU P, ZHANG K, WANG Z, et al. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13576-13581.

    [5] MOMOSE A, KAWAMOTO S, KOYAMA I, et al. Demonstration of X-ray Talbot interferometry[J]. Japanese Journal of Applied Physics, 2003, 42(7B): L866-L868.

    [6] PFEIFFER F, WEITKAMP T, BUNK O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4): 258-261.

    [7] LIU Xin, GUO Jin-chuan. Arrayed source in differential phase-contrast imaging[J].Acta Photonica Sinica, 2011, 40(2): 242-246.

    [8] NODA D, TANAKA M, SHIMADA K, et al. Fabrication of large area diffraction grating using LIGA process[J]. Microsystem Technologies, 2008, 14(9-11): 1311-1315.

    [9] WU B, KUMAR A, PAMARTHY S. High aspect ratio silicon etch[J].Journal of Applied Physics, 2010, 108(5): 051101.

    [10] DAVID C, BRUDER J, ROHBECK T, et al. Fabrication of diffraction gratings for hard x-ray phase contrast imaging[J]. Microelectronic Engineering, 2007, 84(5-8): 1172-1177.

    [11] LEI Y, DU Y, LI J, et al. Fabrication of X-ray absorption gratings via micro-casting for grating-based phase contrast imaging[J]. Journal of Micromechanics and Microengineering, 2014, 24(1): 015007.

    [12] VILA-COMAMALA J, ROMANO L, GUZENKO V, et al. Towards sub-micrometer high aspect ratio X-ray gratings by atomic layer deposition of iridium[J]. Microelectronic Engineering, 2018, 192: 19-24.

    [13] FINNEGAN P S, HOLLOWELL A E, ARRINGTON C L, et al. High aspect ratio anisotropic silicon etching for X-ray phase contrast imaging grating fabrication[J]. Materials Science in Semiconductor Processing, 2019, 92: 80-85.

    [14] KAGIAS M, WANG Z, GUZENKO V A, et al. Fabrication of Au gratings by seedless electroplating for X-ray grating interferometry[J]. Materials Science in Semiconductor Processing, 2019, 92: 73-79.

    [15] LI Ji, HUANG Jian-heng, LEI Yao-hu, et al. Experimental study of X-ray phase contrast imaging based on cascaded grating[J]. Acta Photonic Sinica, 2019, 48(1): 0111003.

    [16] LEI Y, LIU X, HUANG J, et al. Cascade Talbot-Lau interferometers for X-ray differential phase-contrast imaging[J]. Journal of Physics D: Applied Physics, 2018, 51(38): 385302.

    [in Chinese], [in Chinese], [in Chinese], WALI Faiz. Fabrication of X-ray Absorption Gratings by Free Settling of Bismuth Nanoparticles[J]. Acta Photonica Sinica, 2019, 48(10): 1005001
    Download Citation