• Acta Physica Sinica
  • Vol. 68, Issue 22, 227202-1 (2019)
Tian Xiang1、2, Liang Cheng1, and Jing-Bo Qi1、2、*
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Guangdong Institute of Electronic Information Engineering, University of Electronic Science and Technology, Dongguan 523808, China
  • show less
    DOI: 10.7498/aps.68.20191433 Cite this Article
    Tian Xiang, Liang Cheng, Jing-Bo Qi. Ultrafast charge and spin dynamics on topological insulators[J]. Acta Physica Sinica, 2019, 68(22): 227202-1 Copy Citation Text show less
    (a) Experimental setup of optical pump-probe spectroscopy in reflection configuration; (b) typical optical pump-probe signal of GaAs.(a)反射式光学抽运-光学探测光路; (b)GaAs的典型的光学抽运-光学探测信号
    Fig. 1. (a) Experimental setup of optical pump-probe spectroscopy in reflection configuration; (b) typical optical pump-probe signal of GaAs.(a)反射式光学抽运-光学探测光路; (b)GaAs的典型的光学抽运-光学探测信号
    (a) Electro-optic sampling[15]; (b) experimental setup of OPTP spectroscopy.(a) 电光采样法[15]; (b) OPTP光谱光路示意图
    Fig. 2. (a) Electro-optic sampling[15]; (b) experimental setup of OPTP spectroscopy. (a) 电光采样法[15]; (b) OPTP光谱光路示意图
    (a) Schematic of magneto-optic Kerr effect[9]; (b) TRKR[8] via pump-probe technique.(a)磁光克尔效应的原理[9]; (b)基于抽运-探测技术的时间分辨克尔旋转光谱示意图[8]
    Fig. 3. (a) Schematic of magneto-optic Kerr effect[9]; (b) TRKR[8] via pump-probe technique. (a)磁光克尔效应的原理[9]; (b)基于抽运-探测技术的时间分辨克尔旋转光谱示意图[8]
    Schematic of (a) ARPES and (b) Tr-ARPES[23] setups.(a) ARPES 和(b) Tr-ARPES[23]实验平台示意图
    Fig. 4. Schematic of (a) ARPES and (b) Tr-ARPES[23] setups. (a) ARPES 和(b) Tr-ARPES[23]实验平台示意图
    (a), (b) Transient reflectivity of Bi2Se3 measured via OPOP at room temperature[7,11]. The red squares in (b) show the full width half maximum of the probe light’s spot as a function of delay time[11].(a), (b)室温下Bi2Se3单晶的OPOP信号[7,11], 其中图(b)中红色方框为探测光在Bi2Se3样品表面上的光斑的半高全宽随时间延时的变化[11]
    Fig. 5. (a), (b) Transient reflectivity of Bi2Se3 measured via OPOP at room temperature[7,11]. The red squares in (b) show the full width half maximum of the probe light’s spot as a function of delay time[11]. (a), (b)室温下Bi2Se3单晶的OPOP信号[7,11], 其中图(b)中红色方框为探测光在Bi2Se3样品表面上的光斑的半高全宽随时间延时的变化[11]
    OPTP signals of Bi2Se3 thin film[32]: (a) Conductance of Bi2Se3 without optical pump; (b) transmitted terahertz electric field after sample under optical pump; (c), (d) transient THz peak signal of samples with different thickness and pump power; (e)—(h) scattering rate and plasma frequency obtained from the fitting of conductance of Bi2Se3 by Drude-Lorentz model with different sample thickness and pump delay.Bi2Se3薄膜的OPTP信号[32] (a)无光抽运下的Bi2Se3电导; (b)有光抽运下透过Bi2Se3的太赫兹波形; (c), (d)不同样品厚度以及不同功率下太赫兹电场峰值随着抽运延时变化; (e)—(h)为在不同抽运延迟下, 通过用Drude-Lorentz拟合的对于不同厚度样品散射率和等离子频率
    Fig. 6. OPTP signals of Bi2Se3 thin film[32]: (a) Conductance of Bi2Se3 without optical pump; (b) transmitted terahertz electric field after sample under optical pump; (c), (d) transient THz peak signal of samples with different thickness and pump power; (e)—(h) scattering rate and plasma frequency obtained from the fitting of conductance of Bi2Se3 by Drude-Lorentz model with different sample thickness and pump delay. Bi2Se3薄膜的OPTP信号[32]  (a)无光抽运下的Bi2Se3电导; (b)有光抽运下透过Bi2Se3的太赫兹波形; (c), (d)不同样品厚度以及不同功率下太赫兹电场峰值随着抽运延时变化; (e)—(h)为在不同抽运延迟下, 通过用Drude-Lorentz拟合的对于不同厚度样品散射率和等离子频率
    (a), (b) OPTP signals of Bi1.5Sb0.5Te1.7Se1.3 (BSTS) and Bi2Se3; (c), (d) schematic diagrams of energy bands and electron transfer in BSTS and Bi2Se3[35](a), (b) Bi1.5Sb0.5Te1.7Se1.3(BSTS)和Bi2Se3的OPTP信号; (c), (d)BSTS和Bi2Se3的能带结构示意图和电子转移[35]
    Fig. 7. (a), (b) OPTP signals of Bi1.5Sb0.5Te1.7Se1.3 (BSTS) and Bi2Se3; (c), (d) schematic diagrams of energy bands and electron transfer in BSTS and Bi2Se3[35](a), (b) Bi1.5Sb0.5Te1.7Se1.3(BSTS)和Bi2Se3的OPTP信号; (c), (d)BSTS和Bi2Se3的能带结构示意图和电子转移[35]
    Experimental Tr-ARPES data[13]: (a) The relaxation process for different bands of p-doped Bi2Se3 excited by light; (b) schematic of the electronic band structures of Bi2Se3 for reference; (c) electronic band structures for Bi2Se3, and the surface states and bulk conduction band are unoccupied due to the Fermi energy sitting inside the bulk valence band; (d) electrons are excited to high energy band after the excitation; (e)–(g) relaxation process of high energy electrons.Bi2Se3的Tr-ARPES信号[13] (a) p型掺杂的Bi2Se3受光激发后不同能带的弛豫过程; (b)用于参考的Bi2Se3的能带; (c)平衡态Bi2Se3的能带结构, 由于掺杂导致费米能级较低, 表面态和体态导带并没有被占据; (d)在刚刚被抽运光激发时, 电子被激发到较高能级处; (e)—(g)则描述了较高能量的电子的弛豫过程
    Fig. 8. Experimental Tr-ARPES data[13]: (a) The relaxation process for different bands of p-doped Bi2Se3 excited by light; (b) schematic of the electronic band structures of Bi2Se3 for reference; (c) electronic band structures for Bi2Se3, and the surface states and bulk conduction band are unoccupied due to the Fermi energy sitting inside the bulk valence band; (d) electrons are excited to high energy band after the excitation; (e)–(g) relaxation process of high energy electrons. Bi2Se3的Tr-ARPES信号[13]  (a) p型掺杂的Bi2Se3受光激发后不同能带的弛豫过程; (b)用于参考的Bi2Se3的能带; (c)平衡态Bi2Se3的能带结构, 由于掺杂导致费米能级较低, 表面态和体态导带并没有被占据; (d)在刚刚被抽运光激发时, 电子被激发到较高能级处; (e)—(g)则描述了较高能量的电子的弛豫过程
    Electron temperature of Bi2Se3 obtained by Tr-ARPES from Shen's group (a)[13] and Gedik's group (b)[36].由Shen研究组(a)[13]和Gedik研究组(b)[36]利用Tr-ARPES所测得的Bi2Se3电子温度数据
    Fig. 9. Electron temperature of Bi2Se3 obtained by Tr-ARPES from Shen's group (a)[13] and Gedik's group (b)[36]. 由Shen研究组(a)[13]和Gedik研究组(b)[36]利用Tr-ARPES所测得的Bi2Se3电子温度数据
    OPOP experimental data and Fourier transform of the oscillatory data for Bi2Se3 at 293 K[8].Bi2Se3的OPOP实验数据及其傅里叶变换结果[8]
    Fig. 10. OPOP experimental data and Fourier transform of the oscillatory data for Bi2Se3 at 293 K[8]. Bi2Se3的OPOP实验数据及其傅里叶变换结果[8]
    Experimental Tr-ARPES data of Bi2Se3[48].Bi2Se3的Tr-ARPES实验数据图[48]
    Fig. 11. Experimental Tr-ARPES data of Bi2Se3[48]. Bi2Se3的Tr-ARPES实验数据图[48]
    Photoinduced relaxation processes of carriers and spin in Bi2Se3[14]: (a)−(d) correspond to the relaxation processes of different time scalesBi2Se3中载流子和自旋在光激发下的弛豫过程图示[14] (a)−(d)不同时间尺度下的弛豫过程
    Fig. 12. Photoinduced relaxation processes of carriers and spin in Bi2Se3[14]: (a)−(d) correspond to the relaxation processes of different time scales Bi2Se3中载流子和自旋在光激发下的弛豫过程图示[14]  (a)−(d)不同时间尺度下的弛豫过程
    (a) Time-resolved Kerr rotation of Bi2Se3 at 10 K and 80 K. Red line indicates that the pump laser is left circularly polarized while the blue one is right circularly polarized[8]. (b) Time-resolved Kerr rotation of Bi2Se3 excited at different photon energies for different temperatures[8]. (c) fittings of the TRKR experimental data for Bi2Se3[8]. (d) Kerr rotation experimental data via second harmonic generation(oblique pump)[14]. (e)−(h) transient reflectivity corresponding to the left and right circularly polarized pump light[53].(a) Bi2Se3样品在10 K和80 K时的克尔转角光谱, 红线代表抽运激光为左旋圆偏振光, 蓝色实线代表右旋圆偏振光[8]; (b) Bi2Se3样品在不同光子能量和不同温度下的克尔转角光谱[8]; (c) Bi2Se3实验数据拟合[8]; (d)二次谐波克尔光谱(斜入射抽运光)测得的实验数据[14]; (e)−(h)左右圆偏振光激发后反射率变化随时间变化的实验数据[53]
    Fig. 13. (a) Time-resolved Kerr rotation of Bi2Se3 at 10 K and 80 K. Red line indicates that the pump laser is left circularly polarized while the blue one is right circularly polarized[8]. (b) Time-resolved Kerr rotation of Bi2Se3 excited at different photon energies for different temperatures[8]. (c) fittings of the TRKR experimental data for Bi2Se3[8]. (d) Kerr rotation experimental data via second harmonic generation(oblique pump)[14]. (e)−(h) transient reflectivity corresponding to the left and right circularly polarized pump light[53]. (a) Bi2Se3样品在10 K和80 K时的克尔转角光谱, 红线代表抽运激光为左旋圆偏振光, 蓝色实线代表右旋圆偏振光[8]; (b) Bi2Se3样品在不同光子能量和不同温度下的克尔转角光谱[8]; (c) Bi2Se3实验数据拟合[8]; (d)二次谐波克尔光谱(斜入射抽运光)测得的实验数据[14]; (e)−(h)左右圆偏振光激发后反射率变化随时间变化的实验数据[53]
    Schematic of photo-excitation processes via light with different photon energies in Bi2Se3[8].Bi2Se3在不同光子能量激发下的能带跃迁示意图[8]
    Fig. 14. Schematic of photo-excitation processes via light with different photon energies in Bi2Se3[8]. Bi2Se3在不同光子能量激发下的能带跃迁示意图[8]
    Tian Xiang, Liang Cheng, Jing-Bo Qi. Ultrafast charge and spin dynamics on topological insulators[J]. Acta Physica Sinica, 2019, 68(22): 227202-1
    Download Citation