• Acta Photonica Sinica
  • Vol. 45, Issue 12, 1207001 (2016)
HU Yi-hua1、2、*, YU Lei1、2, XU Shi-long1、2, LI Le1、2, and DONG Xiao1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20164512.1207001 Cite this Article
    HU Yi-hua, YU Lei, XU Shi-long, LI Le, DONG Xiao. Doppler Frequency Estimation of Coherent Doppler Wind Lidar Based on Periodogram Maximum Likelihood Algorithm[J]. Acta Photonica Sinica, 2016, 45(12): 1207001 Copy Citation Text show less
    References

    [1] HU Shen-sen, LIU Ji-qiao, DIAO Wei-feng, et al. Study of wind profile inversion based on airborne Doppler wind lidar[J]. Journal of the Meteorological Sciences, 2016, 36(1): 96-101.

    [2] DOLFI-BOUTEYRE A, CANAT G, VALLA M, et al. Pulsed 1.5- m LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450.

    [3] ANDO T, KAMEYAMA S, HIRANO Y. All-fiber coherent Doppler LIDAR technologies at Mitsubishi electric corporation[J]. IOP Conference Series: Earth and Environmental Science, 2008, 1: 12011.

    [4] BAI Xue, GUO Pan, CHEN Si-ying, et al. Simulation in the time domain and time-frequency analysis for coherent doppler wind lidar[J]. Chinese Journal of Lasers, 2015, 42(1): 0114003.

    [5] WU Yong-hua, HU Yi-hua, DAI Ding-chuan, et al. Research on the technique of aircraft wake vortex detection based on 1.5 μm Doppler lidar[J]. Acta Photonica Sinica, 2011, 40(6): 811-817.

    [6] XU Shi-long, HU Yi-hua. Extrication of wake vortex parameters based on lidar echo[J]. Acta Photonica Sinica, 2013, 42(1): 54-58.

    [7] XU Shi-long, HU Yi-hua, WU Yong-hua. Identification of aircraft wake vortex based on Doppler spectrum features[J]. Journal of Optoelectronics·Laser, 2011, 22(12): 1826-1830.

    [8] WU Yong-hua, HU Yi-hua, GU You-lin, et al. Research on a new air moving target information acquisition algorithm[J]. Acta Optica Sinica, 2010, 30(s1): s100510.

    [9] LI Lu, GUO Pan, ZHANG Yin-chao, et al. Application of smoothness prior aproach for coherent doppler wind lidar[J]. Acta Optica Sinica, 2015, 35(7): 0728001.

    [10] WANG Guo-cheng, SUN Dong-song, DUAN Lian-fei, et al. Analysis of factors affecting the data accuracy of Doppler wind lidar[J]. Acta Optica Sinica, 2015, 35(09): 0901003.

    [11] ABEYSEKERA S. Performance of pulse-pair method of Doppler estimation[J]. IEEE Transactions on Aerospace & Electronic Systems, 1998, 34(2): 520-531.

    [12] ABEYSEKERA S. Efficient frequency estimation using the pulse-pair method at various lags[J]. IEEE Transactions on Communications, 2006, 54(9): 1542-1546.

    [13] DABAS A M, DROBINSKI P, FLAMANTl P H. Adaptive filters for frequency estimate of heterodyne Doppler lidar returns: recursive implementation and quality control[J]. Journal of Atmospheric & Oceanic Technology, 1999, 16(3): 361-372.

    [14] JIA Xiao-dong, SUN Dong-feng, SHU Zhi-feng, et al. Optimal design of the telescope in coherent lidar and detection performance analysis[J]. Acta Optica Sinica, 2015, 35(3): 0301001.

    [15] FREHLICH R. Performance of maximum likelihood estimators of mean power and Doppler velocity with A priori knowledge of spectral width[J]. Journal of Atmospheric & Oceanic Technology, 1999, 16(11): 1702-1709.

    [16] JIA Xiao-dong, SUN Dong-feng. Maximum likelihood discrete spectral peak estimation in coherent wind lidar and Monte Carlo simulation[J]. High Power Laser & Particle Beams, 2015, 27(6): 69-74.

    [17] GUO Xian-bin, GUO Pan, ZHANG Yin-chao, et al. Performance analysis of maximum likelihood spectral estimator compared with PM estimator[J]. Chinese Journal of Lasers, 2016, 43(3): 0314001.

    [18] FREHLICH R. Effects of wind turbulence on coherent Doppler lidar performance[J]. Journal of Atmospheric & Oceanic Technology, 1997, 14(1): 54-75.

    [19] FREHLICH R. Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals[J]. IEEE Transactions on Geoscience & Remote Sensing, 1993, 31(6): 1123-1131.

    [20] KAMEYAMA S, ANDO T, ASAKA K, et al. Performance of discrete-fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime[J]. Geoscience & Remote Sensing IEEE Transactions on, 2009, 47(10): 3560-3569.

    [21] SALAMITOU P, DABAS A, FLAMANT P H. Simulation in the time domain for heterodyne coherent laser radar.[J]. Applied Optics, 1995, 34(3): 499-506.

    [22] XU Shi-long, HU Yi-hua, GUO Li-ren. Design and performance analysis of aircraft wake vortex coherent laser detection system[J]. Laser & Optoelectronics Progress, 2014, 51(8): 100-105.

    [23] FREHLICH R. Simulation of Coherent Doppler lidar performance in the weak-signal regime[J]. Journal of Atmospheric & Oceanic Technology, 1996, 13(3): 646-658.

    [24] IGORS, FREHLICH K, STEPHAN R. Measurement of atmospheric turbulence by 2 μ m Doppler lidar[J]. Journal of Atmospheric & Oceanic Technology, 2005, 22(11): 1733-174.

    HU Yi-hua, YU Lei, XU Shi-long, LI Le, DONG Xiao. Doppler Frequency Estimation of Coherent Doppler Wind Lidar Based on Periodogram Maximum Likelihood Algorithm[J]. Acta Photonica Sinica, 2016, 45(12): 1207001
    Download Citation