• Chinese Optics Letters
  • Vol. 20, Issue 3, 031902 (2022)
Jian Huang1、2, Yuangang Lu1、2、*, Zhengnan Wu1、2, Youwen Xie1、2, Chongjun He1, and Junfeng Wu1
Author Affiliations
  • 1Key Laboratory of Space Photoelectric Detection and Perception of Ministry of Industry and Information Technology, College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 2College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • show less
    DOI: 10.3788/COL202220.031902 Cite this Article Set citation alerts
    Jian Huang, Yuangang Lu, Zhengnan Wu, Youwen Xie, Chongjun He, Junfeng Wu. Infrared broadband nonlinear optical limiting technology based on stimulated Brillouin scattering in As2Se3 fiber[J]. Chinese Optics Letters, 2022, 20(3): 031902 Copy Citation Text show less
    References

    [1] L. W. Tutt, T. F. Boggess. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum Electron., 17, 299(1993).

    [2] J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, J. Wang. Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets. ACS Photonics, 4, 3063(2017).

    [3] O. Muller, V. Pichot, L. Merlat, D. Spitzer. Optical limiting properties of surface functionalized nanodiamonds probed by the Z-scan method. Sci. Rep., 9, 519(2019).

    [4] E. Sani, N. Papi, L. Mercatelli, S. Barison, F. Agresti, S. Rossi, A. Dell’Oro. Optical limiting of carbon nanohorn-based aqueous nanofluids: a systematic study. Nanomaterials, 10, 2160(2020).

    [5] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219(2008).

    [6] R. W. Waynant, I. K. Iiev, I. Gannot. Mid-infrared laser applications in medicine and biology. Phil. Trans. R. Soc. Lond. A, 359, 635(2001).

    [7] B. M. Walsh, H. R. Lee, N. P. Barnes. Mid infrared lasers for remote sensing applications. J. Lumi., 169, 400(2016).

    [8] M. Vainio, J. Karhu. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy. Opt. Express, 25, 4190(2017).

    [9] L. G. Holemen, M. W. Haakestad. Optical limiting properties of carbon disulfide at 2.05 µm wavelength. Proc. SPIE, 9731, 97310J(2016).

    [10] N. Liaros, E. Koudoumas, S. Couris. Broadband near infrared optical power limiting of few layered graphene oxides. Appl. Phys. Lett., 104, 191112(2014).

    [11] S. Pascal, S. David, C. Andraud, O. Maury. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chem. Soc. Rev., 50, 6613(2021).

    [12] A. Sarangan, J. Duran, V. Vasilyev, N. Limberopoulos, I. Vitebskiy, I. Anisimov. Broadband reflective optical limiter using GST phase change material. IEEE Photonics J., 10, 2200409(2018).

    [13] S. Aithal, P. S. Aithal, G. K. Bhat. Characteristics of ideal optical limiter and realization scenarios using nonlinear organic materials. Int. J. Adv. Trends Eng. Technol, 1, 73(2017).

    [14] L. R. Robichaud, V. Fortin, J. C. Cauthier, S. Chatigny, J. F. Couillard, J. L. Delarosbil, R. Vallee, M. Bernier. Compact 3–8 µm supercontinuum generation in a low-loss As2Se3 step-index fiber. Opt. Lett., 41, 4605(2016).

    [15] Y. Lv, L. Wu, X. Chong. Nonlinear optical properties of stimulated Brillouin scattering process in submerged object detection. Chin. Opt. Lett., 6, 137(2008).

    [16] J. H. Vella, J. H. Goldsmith, A. T. Browning, N. I. Limberopoulos, I. Vitebskiy, E. Makri, T. Kottos. Experimental realization of a reflective optical limiter. Phys. Rev. Appl., 5, 064010(2016).

    [17] E. P. Ippen, R. H. Stolen. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett., 21, 539(1972).

    [18] K. Kawanishi, F. Drouet, K. Itoh, T. Konishi. Highly accurate compensation technique for 10-GHz pulse intensity fluctuation ssing SPM-based all-optical intensity limiter. IEEE Photonic Tech. Lett., 24, 119(2012).

    [19] I. Martincek, D. Pudis. Fiber-optical power limiter and cut-off switch based on thermo-optical effect. IEEE Photonic Tech. Lett., 24, 297(2012).

    [20] X. Chen, L. Xia, W. Li, C. Li. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber. Chin. Opt. Lett., 15, 042901(2017).

    [21] A. L. Gaeta, R. W. Boyd. Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A, 44, 3205(1991).

    [22] R. W. Boyd. Nonlinear Optics(2008).

    [23] G. P. Agrawal. Nonlinear Fiber Optics(2012).

    [24] W. Gao, L. Chen, W. Jiang, Z. Zhang, X. Zhang, P. Gao, K. Xie, W. Zhang, Y. Zhou, M. Liao, T. Suzuki, Y. Ohishi. Stimulated Brillouin scattering by the interaction between different-order optical and acoustical modes in an As2Se3 photonic crystal fiber. Chin. Opt. Lett., 18, 010602(2020).

    [25] M. Zhang, L. Li, T. Li, F. Wang, K. Tian, H. Tao, X. Feng, A. Yang, Z. Yang. Mid-infrared supercontinuum generation in chalcogenide fibers with high laser damage threshold. Opt. Express, 27, 29287(2019).

    [26] G. Xing, J. Jiang, J. Y. Ying, W. Ji. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Opt. Express, 18, 6183(2010).

    [27] E. W. V. Stryland, M. A. Woodall, H. Vanherzeele, M. J. Soileau. Energy band-gap dependence of two-photon absorption. Opt. Lett., 10, 490(1985).

    [28] K. S. Abedin. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt. Express, 13, 10266(2005).

    [29] C. Florea. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fiber. Opt. Express, 14, 12063(2006).

    [30] H. Gong, Z. Lv, D. Lin, S. Liu. Influence of medium parameters on power limiting characteristic in stimulated Brillouin scattering process. Chin. Opt. Lett., 5, 674(2007).

    [31] K. Ogusu, H. Li, M. Kitao. Brillouin-gain coefficients of chalcogenide glasses. J. Opt. Soc. Am. B, 21, 1302(2004).

    [32] X. Sun, X. Hu, J. Sun, Z. Xie, S. Zhou, P. Chen. Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses. Adv. Compos. Hybrid Mater., 1, 397(2018).

    Data from CrossRef

    [1] Hongcheng Ni, Yuangang Lu, Zelin Zhang, Jianqin Peng, Wei Geng, Biao Dong, Jian Huang. A Novel Nonlinear Optical Limiter Based on Stimulated Brillouin Scattering in Highly-Nonlinear Fiber. Crystals, 12, 1751(2022).

    Jian Huang, Yuangang Lu, Zhengnan Wu, Youwen Xie, Chongjun He, Junfeng Wu. Infrared broadband nonlinear optical limiting technology based on stimulated Brillouin scattering in As2Se3 fiber[J]. Chinese Optics Letters, 2022, 20(3): 031902
    Download Citation