• Acta Photonica Sinica
  • Vol. 46, Issue 3, 314001 (2017)
LIANG Qing*, FAN Li, YANG Ji-yun, WU Zheng-mao, and XIA Guang-qiong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20174603.0314001 Cite this Article
    LIANG Qing, FAN Li, YANG Ji-yun, WU Zheng-mao, XIA Guang-qiong. Narrow-linewidth Photonic Microwave Acquisition Based on an Optically Injected 1 550 nm Vertical-cavity Surface-emitting Laser under Optoelectronic Negative Feedback[J]. Acta Photonica Sinica, 2017, 46(3): 314001 Copy Citation Text show less
    References

    [1] CHEN Lin, WEN Hong, WEN Shuang-chun. A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for Up-Link connection[J]. IEEE Photonics Technology Letters, 2006, 18(19): 2056-2058.

    [2] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.

    [3] WANG Dong, DAI Bo, REN Li-qing, et al. A modulation sheme to generate 24-GHz-band millimeter-wave-band ultra-wideband signal by using machzehnder modulator[J]. Acta Photonica Sinica, 2015, 44(9): 0906001.

    [4] PAN Shi-long, ZHANG Ya-mei. Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer[J]. Optics Letters, 2012, 37(21): 4483-4485.

    [5] JUAN Yu-shan, LIN Fan-yi. Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser[J]. IEEE Photonics Journal, 2011, 3(4): 644-650.

    [6] CHAN Sze-chun, HWANG Sheng-kwang, LIU Jia-ming. Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser[J]. Optics Express, 2007, 15(22): 14921-14935.

    [7] LIU Yu-ping, QI Xiao-qiong, XIE Liang. Dual-beam optically injected semiconductor laser for radio-over-fiber downlink transmission with tunable microwave subcarrier frequency[J]. Optics Communications, 2012, 292(4): 117-122.

    [8] GUENNEC Y L, MAURY G, YAO J, et al. New optical microwave up-conversion solution in radio-over-fiber networks for 60-GHz wireless applications[J]. Journal of Lightwave Technology, 2006, 24(3): 1277-1282.

    [9] RYU H S, SEO Y K, CHOI W Y. Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode[J]. IEEE Photonics Technology Letters, 2004, 16(8): 1942-1944.

    [10] HAN J, SEO B J, HAN Y, et al. Reduction of fiber chromatic dispersion effects in fiber-wireless and photonic time-stretching system using polymer modulators[J]. Journal of Lightwave Technology, 2003, 21(6): 1504-1509.

    [11] HYODO M, ABEDIN K S, ONODERA N. Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal[J]. Optics Communications, 1999, 171(1-3): 159-169.

    [12] PAN Bi-wei, LU Dan, SUN Yu, et al. Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser[J]. Optics Letters, 2014, 39(22): 6395-6398.

    [13] CHEN Guo-jie, HUANG De-xiu, ZHANG Xin-liang, et al. Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber[J]. Optics Letters, 2008, 33(6): 554-556.

    [14] HWANG Sheng-kwang, LIU Jia-ming, WHITE J K. Characteristics of period-one oscillations in semiconductor lasers subject to optical injection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 974-981.

    [15] CHAN Sze-chun, HWANG Sheng-kwang, LIU Jia-ming. Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser[J]. Optics Express, 2007, 15(22): 14921-14935.

    [16] LIAO Yi-huan, LIN Fan-yi. Dynamical characteristics and their applications of semiconductor lasers subject to both optical injection and optical feedback[J]. Optics Express, 2013, 21(20): 23568-23578.

    [17] LO Kai-hung, HWANG Sheng-kwang, DONATI Silvano.et al. Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers[J]. Optics Express, 2014, 22(15): 18648-18661.

    [18] CHAN Sze-chun. Analysis of an optically injected semiconductor laser for microwave generation[J]. IEEE Journal of Quantum Electronics, 2010, 46(3): 421-428.

    [19] FAN Li, WU Zheng-mao, DENG Tao, et al. Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser[J]. Journal of Lightwave Technology, 2014, 32(23): 4058-4064.

    [20] ZANOLA M, STRAIN M J, GIULIANI G, et al. Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(19): 1500406.

    [21] KASZUBOWSKA A, ANANDARAJAH P, BARRY L P. Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection[J]. IEEE Photonics Technology Letters, 2002, 14(2): 233-235.

    [22] QI Xiao-qiong, LIU Jia-ming. Photonic microwave applications of the dynamics of semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1198-1211.

    [23] SIMPSON T B, DOFT F. Double-locked laser diode for microwave photonics applications[J]. IEEE Photonics Technology Letters, 1999, 11(11): 1476-1478.

    [24] SIMPSON T B. Phase-locked microwave-frequency modulations in optically-injected laser diodes[J]. Optics Communications, 1999, 170(1-3): 93-98.

    [25] CHAN Sze-chun, LIU Jia-ming. Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 1025-1032.

    [26] SIMPSON T B, LIU Jia-ming, ALMULLA M, et al. Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1500807.

    [27] GOLDBERG L, TAYLOR H F, WELLER J F, et al. Microwave signal generation with injection-locked laser diodes[J]. Electronics Letters, 1983, 19(13): 491-493.

    [28] KOYAMA F. Recent advances of VCSEL photonics[J]. Journal of Lightwave Technology, 2006, 24(12): 4502-4513.

    [29] QUIRCE A, VALLE A. High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection[J]. Optics Express, 2012, 20(12): 13390-13401.

    [30] PEREZ P, QUIRCE A, VALLE A, et al. Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection[J]. IEEE Photonics Journal, 2015, 7(1): 1-14.

    [31] HE Yang, DENG Tao, QIU Hai-ying, et al. Nonlinear dynamics of optical injected VCSELs subject to optoelectronic feedback[J]. Acta Photonica Sinica, 2016, 45(1): 0114002.

    [32] YANG Xin, WU Zheng-mao, DENG Tao, et al. Nonlinear dynamics of 1550 nm vertical-cavity surface-emitting lasers subject to negative optoelectronic feedback[J]. Acta Photonica Sinica, 2016, 45(8): 0814004.

    [33] SUN Bo, WU Jia-gui, WANG Shun-tian, et al. Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser[J]. Acta Physica Sinica, 2016, 65(1): 014207.

    [34] WANG Xia-fa, XIA Guang-qiong, WU Zheng-mao. Theoretical investigations on the polarization performances of current-modulated VCSELs subject to weak optical feedback[J]. Journal of the Optical Society of America B: Optical Physics, 2009, 26(1): 160-168.

    CLP Journals

    [1] YANG Wen-yan, XIA Guang-qiong, HOU Yu-shuang, JIANG Zai-fu, DENG Tao, WU Zheng-mao. Experimental Investigation on Nonlinear Dynamics of a Multi-transverse Mode 1 550 nm Vertical-cavity Surface-emitting Laser Subject to Parallel Optical Injection[J]. Acta Photonica Sinica, 2018, 47(7): 714002

    [2] PANG Hai-yue, LIN Xiao-dong, WU Zheng-mao, DENG Tao, XIA Guang-qiong. Widely Tunable Narrow-linewidth Photonic Microwave Generation Using Optically Injected Semiconductor Laser Combined with Optoelectronic Loops[J]. Acta Photonica Sinica, 2018, 47(1): 114003

    LIANG Qing, FAN Li, YANG Ji-yun, WU Zheng-mao, XIA Guang-qiong. Narrow-linewidth Photonic Microwave Acquisition Based on an Optically Injected 1 550 nm Vertical-cavity Surface-emitting Laser under Optoelectronic Negative Feedback[J]. Acta Photonica Sinica, 2017, 46(3): 314001
    Download Citation