• Journal of Advanced Dielectrics
  • Vol. 13, Issue 1, 2242008 (2023)
Dongyang Sun1, Bernard L. H. Saw2, Amaka J. Onyianta3, Bowen Wang4, Callum Wilson1, Dominic O’Rourke1, Chan H. See1, Carmen-Mihaela Popescu5, Mark Dorris1, Islam Shyha1, and Zhilun Lu1、*
Author Affiliations
  • 1School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh, UK
  • 2Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman Kajang, Malaysia
  • 3Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
  • 4School of Engineering and Materials Science, Queen Mary University of London, London, UK
  • 5Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Iasi, Romania
  • show less
    DOI: 10.1142/S2010135X22420085 Cite this Article
    Dongyang Sun, Bernard L. H. Saw, Amaka J. Onyianta, Bowen Wang, Callum Wilson, Dominic O’Rourke, Chan H. See, Carmen-Mihaela Popescu, Mark Dorris, Islam Shyha, Zhilun Lu. Preparation of elastomeric nanocomposites using nanocellulose and recycled alum sludge for flexible dielectric materials[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242008 Copy Citation Text show less
    References

    [1] T. Gupta, U. Kulshrestha, S. B. Ghosh. Green elastomeric nanocomposites for high-performance applications. Mater. Today, Proc., 28, 2494(2020).

    [2] V. Mittal, J. K. Kim, K. Pal. Recent1 Advances in Elastomeric Nanocomposites, 9(2011).

    [3] A. Thomas, J. Whittle. Tensile rupture of rubber. Rub. Chem. Technol., 43, 222(1970).

    [4] K. G. Nair, A. Dufresne. Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules, 4, 666(2003).

    [5] P. C. LeBaron, T. J. Pinnavaia. Clay nanolayer reinforcement of a silicone elastomer. Chem. Mater., 13, 3760(2001).

    [6] Y. Zhou et al. Lignocellulosic fibre mediated rubber composites: An overview. Compos. B, Eng., 76, 180(2015).

    [7] D. M. Updegraff. Semimicro determination of cellulose inbiological materials. Anal. Biochem., 32, 420(1969).

    [8] J. Roberts, L. M. Srivastava. Plant growth and development. Hormones and the environment. Ann. Bot., 92, 846(2003).

    [9] T. Istirokhatun et al. Cellulose isolation from tropical water hyacinth for membrane preparation. Procedia Environ. Sci., 23, 274(2015).

    [10] M. Mahardika et al. Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers, 6, 28(2018).

    [11] P. Phanthong et al. Nanocellulose: Extraction and application. Carbon Resour. Convers., 1, 32(2018).

    [12] N. M. M. Mitan. Water hyacinth: Potential and threat. Int. Conf. Chemical Sciences and Engineering (ICCSE) - Advance and New Materials, 19, 1408(2019).

    [13] C. C. Gunnarsson, C. M. Petersen. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manage, 27, 117(2007).

    [14] L. Ceseracciu et al. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl. Mater. Interfaces, 7, 3742(2015).

    [15] S. Jang, J. H. Oh. Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep., 8, 14287(2018).

    [16] X. L. Chen et al. The fabrication and application of a PDMS micro through-holes mask in electrochemical micromanufacturing. Adv. Mech. Eng., 6, 943092(2014).

    [17] F. P. Sales et al. Mechanical characterization of PDMS with different mixing ratios. Procedia Struct. Integr, 37, 383(2022).

    [18] P. Radanliev et al. Artificial intelligence and the internet of things in Industry 4.0. CCF Trans. Pervasive Comput. Interact., 3, 329(2021).

    [19] C. Xu et al. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng., 7, 25(2021).

    [20] P. Düking et al. Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies. Front. Physiol., 7, 71(2016).

    [21] S. F. Memon, M. Memon, S. Bhatti. Wearable technology for infant health monitoring: A survey. IET Circuits Devices Syst., 14, 115(2020).

    [22] Z. W. Lin et al. A personalized acoustic interface for wearable human-machine interaction. Adv. Funct. Mater., 32, 202109430(2022).

    [23] W. Xu et al. A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg0.23V2O5⋅1.0H2O cathode. J. Mater. Chem. A, 8, 18327(2020).

    [24] Y. Yin et al. Flexible cellulose/alumina (Al2O3) nanocomposite films with enhanced energy density and efficiency for dielectric capacitors. Cellulose, 28, 1541(2021).

    [25] P. Du, X. Lin, X. Zhang. Dielectric constants of PDMS nanocomposites using conducting polymer nanowires. 2011 16th Int. Solid-State Sensors, Actuators and Microsystems Conf, 645-648(2011).

    [26] P. Bertasius et al. Dielectric properties of polydimethylsiloxane composites filled with SrTiO3 nanoparticles. Polym. Compos., 42, 2982(2021).

    [27] A. O. Babatunde, Y. Q. Zhao. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Crit. Rev. Environ. Sci. Technol., 37, 129(2007).

    [28] K. B. Dassanayake et al. A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manage., 38, 321(2015).

    [29] D. Sun et al. A process for deriving high quality cellulose nanofibrils from water hyacinth invasive species. Cellulose, 27, 3727(2020).

    [30] W. Chen et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 18, 433(2011).

    [31] M. Y. Soleha et al. Characterization of raw and thermally treated alum sludge. Key Eng. Mater., 701, 138(2016).

    [32] D. H. Bache, Y. Q. Zhao. Optimising polymer use in alum sludge conditioning: An ad hoc test. J. Water Supply, Res. Technol., AQUA, 50, 29(2001).

    [33] H. Owaid et al. Physical and mechanical properties of high performance concrete with alum sludge as partial cement replacement. Jurnal Teknologi, 65, 105(2013).

    [34] H. Awab, T. Paramalinggam, A. R. M. Yusoff. Characterization of alum sludge for reuse and disposal. Malays. J. Fund. Appl. Sci., 8, 209(2012).

    [35] M. N. Prabhakar et al. Hybrid approach to improve the flame-retardant and thermal properties of sustainable biocomposites used in outdoor engineering applications. Compos. A, Appl. Sci. Manuf., 152, 106674(2022).

    [36] L. Zhang, S. Olhero, J. M. F. Ferreira. Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics. Ceram. Int., 42, 16897(2016).

    [37] M. D. Groner et al. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films, 413, 186(2002).

    [38] A. Khouaja, A. Koubaa, H. B. Daly. Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Ind. Crops Prod., 171, 113928(2021).

    Dongyang Sun, Bernard L. H. Saw, Amaka J. Onyianta, Bowen Wang, Callum Wilson, Dominic O’Rourke, Chan H. See, Carmen-Mihaela Popescu, Mark Dorris, Islam Shyha, Zhilun Lu. Preparation of elastomeric nanocomposites using nanocellulose and recycled alum sludge for flexible dielectric materials[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242008
    Download Citation