• Acta Photonica Sinica
  • Vol. 47, Issue 3, 301002 (2018)
LI Jie1、2、*, ZHAO Yi-qiang1、2, YE Mao1、3, HU Kai1、2, XIE Shao-yu1, XUE Wen-jia1、2, and ZHOU Guo-qing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184703.0301002 Cite this Article
    LI Jie, ZHAO Yi-qiang, YE Mao, HU Kai, XIE Shao-yu, XUE Wen-jia, ZHOU Guo-qing. Multi-channel Processing Technology for Wide Dynamic Range Signal in Airborne Lidar Bathymetry[J]. Acta Photonica Sinica, 2018, 47(3): 301002 Copy Citation Text show less
    References

    [1] BAILLY J S, LE COARER Y, LANGUILLE P, et al. Geostatistical estimations of bathymetric LiDAR errors on rivers[J]. Earth Surface Processes and Landforms, 2010, 35(10): 1199-1210.

    [2] PAN Z, GLENNIE C, HARTZELL P, et al. Performance assessment of high resolution airborne full waveform LiDAR for shallow river bathymetry[J]. Remote Sensing, 2015, 7(5): 5133-5159.

    [3] JASINSKI M F, STOLL J D, COOK W B, et al. Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL)[J]. Journal of Coastal Research, 2016, 76(sp1): 44-55.

    [4] ZHAO J, ZHAO X, ZHANG H, et al. Improved model for depth bias correction in airborne LiDAR bathymetry systems[J]. Remote Sensing, 2017, 9(7): 710.

    [5] IRISH J L, MCCLUNG J K, LILLYCROP W J. Airborne lidar bathymetry: the SHOALS system[R]. US Army Engineer District-Mobile Mobile United States, 2016.

    [6] GRIFFITHS D J, WICKS A. High speed high dynamic range video[J].IEEE Sensors Journal, 2017, 17(8): 2472-2480.

    [7] COSSIO T, SLATTON K C, CARTER W, et al. Predicting topographic and bathymetric measurement performance for low-SNR airborne lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2298-2315.

    [8] LIN W T, SHIH P T Y, CHEN J C, et al. Bathymetric LiDAR green channel derived reflectance: an experiment from the dongsha 2010 mission[J]. Terrestrial, Atmospheric & Oceanic Sciences, 2016, 27(4): 565-576.

    [9] SAYLAM K, BROWN R A, HUPP J R. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 191-200.

    [10] EREN F, PE′ERI S, RZHANOV Y. Airborne Lidar Bathymetry (ALB) waveform analysis for bottom return characteristics[C]. SPIE Defense+ Security. International Society for Optics and Photonics, 2016: 98270H-98270H-6.

    [11] BIRKEBAK M. Airborne lidar bathymetry beam diagnostics using an underwater optical detector array[D]. University of New Hampshire, 2017.

    [12] KOTILAINEN A T, KASKELA A M. Comparison of airborne LiDAR and shipboard acoustic data in complex shallow water environments: Filling in the white ribbon zone[J]. Marine Geology, 2017, 385(1): 250-259.

    [13] MOHAMED H, SALAH M, NADAOKA K, et al. Assessment of proposed approaches for bathymetry calculations using multispectral satellite images in shallow coastal/lake areas: a comparison of five models[J]. Arabian Journal of Geosciences, 2017, 10(2): 42.

    [14] ABDALLAH H, BAGHDADI N, BAILLY J S, et al. Wa-LiD: A new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744-748.

    [15] ABADY L, BAILLY J S, BAGHDADI N, et al. Assessment of quadrilateral fitting of the water column contribution in Lidar waveforms on bathymetry estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 813-817.

    [16] ABDALLAH H, BAILLY J S, BAGHDADI N N, et al. Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1): 202-216.

    CLP Journals

    [1] ZHU Shi-xian, ZHAO Yi-qiang, YE Mao, LI Jie, XIA Xian-zhao, XIE Shao-yu, ZHOU Guo-qing. Saturated Echo Signal Algorithm for Wide Dynamic Range Lidar[J]. Acta Photonica Sinica, 2018, 47(12): 1228003

    LI Jie, ZHAO Yi-qiang, YE Mao, HU Kai, XIE Shao-yu, XUE Wen-jia, ZHOU Guo-qing. Multi-channel Processing Technology for Wide Dynamic Range Signal in Airborne Lidar Bathymetry[J]. Acta Photonica Sinica, 2018, 47(3): 301002
    Download Citation