• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 1, 62 (2022)
ZHAO Yajun*, WANG Xiaoming, LUO Hao, and ZHANG Dawei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20210606 Cite this Article
    ZHAO Yajun, WANG Xiaoming, LUO Hao, ZHANG Dawei. Preparation and Performance of Ag Modified Co3O4 Catalyst in Li-O2 Battery[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 62 Copy Citation Text show less
    References

    [1] BAI W L, ZHANG Z, CHEN X, et al. Phosphazene-derived stable and robust artificial SEI for protecting lithium anodes of Li–O2 batteries[J]. Chem Commun (Camb), 2020, 56(83): 12566–12569.

    [2] GAO R, SHANG Z, ZHENG L, et al. Enhancing the catalytic activity of Co3O4 nanosheets for Li–O2 batteries by the incoporation of oxygen vacancy with hydrazine hydrate reduction[J]. Inorg Chem, 2019, 58(8):4989–4996.

    [3] JIANG Z L, XU G L, YU Z, et al. High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower[J]. Nano Energy, 2019, 64: 103896.

    [4] HOU C, HAN J, LIU P, et al. Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li–O2 micro-battery[J]. Nano Energy, 2018, 47: 427–433.

    [5] JIANG Z, SUN H, SHI W, et al. Co3O4 nanocage derived from metal–organic frameworks: An excellent cathode catalyst for rechargeable Li–O2 battery[J]. Nano Res, 2019, 12(7): 1555–1562.

    [6] HU X, LUO G, ZHAO Q, et al. Ru single atoms on n-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries[J]. J Am Chem Soc, 2020, 142(39): 16776–16786.

    [7] KIM H, KIM T Y, ROEV V, et al. Enhanced electrochemical stability of quasi-solid-state electrolyte containing SiO2 nanoparticles for Li–O2 battery applications[J]. ACS Appl Mater Interfaces, 2016, 8(2):1344–1350.

    [8] ZHAO G, LV J, XU Z, et al. Carbon and binder free rechargeable Li–O2 battery cathode with Pt/Co3O4 flake arrays as catalyst[J]. J Power Sources, 2014, 248: 1270–1274.

    [9] GUO X, HAN J, LIU P, et al. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li–O2 battery[J]. Sci Rep, 2016, 6: 33466.

    [10] LEE S, LEE G H, KIM J C, et al. Magnéli-phase Ti4O7 nanosphere electrocatalyst support for carbon-free oxygen electrodes in lithium–oxygen batteries[J]. ACS Catal, 2018, 8(3): 2601–2610.

    [11] LIAO K, WANG X, SUN Y, et al. An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide[J]. Energy Environ Sci, 2015, 8(7): 1992–1997.

    [12] BLACK R, LEE J H, ADAMS B, et al. The role of catalysts and peroxide oxidation in lithium–oxygen batteries[J]. Angew Chem Int Ed,2013, 52(1): 392–396.

    [13] PARK J, JUN Y S, LEE W R, et al. Bimodal mesoporous titanium nitride/carbon microfibers as efficient and stable electrocatalysts for Li–O2 batteries[J]. Chem Mater, 2013, 25(19): 3779–3781.

    [14] YAN W, GUO Z, XU H, et al. Downsizing metal–organic frameworks with distinct morphologies as cathode materials for high capacity Li–O2 batteries[J]. Mater Chem Front, 2017, 1(7): 1324–1330.

    [15] WANG H, XIE K, WANG L, et al. All carbon nanotubes and freestanding air electrodes for rechargeable Li–air batteries[J]. RSC Adv, 2013, 3(22): 8236–8241.

    [16] LIM H D, PARK K Y, BAUGHMAN R H, et al. Enhanced power and rechargeability of a Li?O2 battery based on a hierarchical–fibril CNT electrode[J]. Adv Mater, 2013, 25(9): 1348–1352.

    [17] JIANG Z L, XIE J, LUO C S, et al. 3D web freestanding RuO2–Co3O4 nanowires on Ni foam as highly efficient cathode catalysts for Li–O2 batteries[J]. RSC Adv, 2018, 8(41): 23397–23403.

    [18] LEE Y J, KIM D H, KANG T G, et al. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li–O2 batteries[J].Chem Mater, 2017, 29(24): 10542–10550.

    [19] GAO R, YANG Z, ZHENG L, et al. Enhancing the catalytic activity of Co3O4 for Li–O2 batteries through the synergy of surface/interface/doping engineering[J]. ACS Catal, 2018, 8(3): 1955–1963.

    [21] JIAO L, WANG Y, JIANG H L, et al. Metal-organic frameworks as platforms for catalytic applications[J]. Adv Mater, 2018, 30: 1703663.

    [22] ZHANG Y, PTACIN J L, FISCHER E C, et al. A semi-synthetic organism that stores and retrieves increased genetic information[J].Nature, 2017, 551(7682): 644–647.

    [23] ZHANG H, LIU X, WU Y, et al. MOF-derived nanohybrids for electrocatalysis and energy storage: Current status and perspectives[J].Chem Commun (Camb), 2018, 54(42): 5268–5288.

    [24] XU J, ZHANG W, CHEN Y, et al. MOF-derived porous N–Co3O4@N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries[J]. J Mater Chem A, 2018, 6(6): 2797–2807.

    [25] ZHANG X, LI X, LI R, et al. Highly active core–shell carbon/NiCo2O4 double microtubes for efficient oxygen evolution reaction: ultralow overpotential and superior cycling stability[J]. Small, 2019, 15(42):1903297.

    [26] LONG C, ZHENG M, XIAO Y, et al. Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors[J].ACS Appl Mater Interfaces, 2015, 7(44): 24419–24429.

    [27] LI J, SHU C, LIU C, et al. Rationalizing the effect of oxygen vacancy on oxygen electrocatalysis in Li–O2 battery[J]. Small, 2020, 16(24):2001812.

    [28] WANG J, GAO R, ZHOU D, et al. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li–O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio [J]. ACS Catal,2017, 7(10): 6533–6541.

    [29] SONG C, ZHANG D, WANG B, et al. Uniformly grown PtCo-modified Co3O4 nanosheets as a highly efficient catalyst for sodium borohydride electrooxidation[J]. Nano Res, 2016, 9(11):3322–3333.

    [30] MU X, WEN Q, OU G, et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li–O2 batteries[J]. Nano Energy, 2018, 51: 83–90.

    [31] LING T, YAN D Y, JIAO Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis[J]. Nat Commun, 2016, 7(1): 1–8.

    [32] SUN Z, CAO X, TIAN M, et al. Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium–oxygen batteries[J]. Adv Energy Mater, 2021, 11: 2100110.

    [33] HYUN S, KAKER V, SIVANANTHAM A, et al. The influence of porous Co/CeO1. 88?nitrogen-doped carbon nanorods on the specific capacity of Li–O2 Batteries[J]. ACS Appl Mater Interfaces, 2021,13(15): 17699–17706.

    [34] ZHANG Y, ZHANG S, MA J, et al. Oxygen vacancy-rich RuO2–Co3O4 nanohybrids as improved electrocatalysts for Li–O2 batteries[J]. ACS Appl Mater Interfaces, 2021, 13(33): 39239–39247.

    [35] GUO Q, ZHANG C, ZHANG C, et al. Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery[J]. J Energy Chem, 2020, 41: 185–193.

    ZHAO Yajun, WANG Xiaoming, LUO Hao, ZHANG Dawei. Preparation and Performance of Ag Modified Co3O4 Catalyst in Li-O2 Battery[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 62
    Download Citation