• Nano-Micro Letters
  • Vol. 16, Issue 1, 232 (2024)
Li Wang1,2,3, Xiaoya Ding4, Lu Fan3,4, Anne M. Filppula3..., Qinyu Li1,*, Hongbo Zhang1,3,**, Yuanjin Zhao1,2,*** and Luoran Shang1,4,5,****|Show fewer author(s)
Author Affiliations
  • 1Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
  • 2Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People’s Republic of China
  • 3Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
  • 4Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People’s Republic of China
  • 5Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01422-4 Cite this Article
    Li Wang, Xiaoya Ding, Lu Fan, Anne M. Filppula, Qinyu Li, Hongbo Zhang, Yuanjin Zhao, Luoran Shang. Self-Healing Dynamic Hydrogel Microparticles with Structural Color for Wound Management[J]. Nano-Micro Letters, 2024, 16(1): 232 Copy Citation Text show less
    References

    [1] S. Willenborg, S.A. Eming, Cellular networks in wound healing. Science 362, 891–892 (2018).

    [2] V. Falanga, R.R. Isseroff, A.M. Soulika, M. Romanelli, D. Margolis et al., Chronic wounds. Nat. Rev. Dis. Primers. 8, 50 (2022).

    [3] H. Chen, Y. Cheng, J. Tian, P. Yang, X. Zhang et al., Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci. Adv. 6, eaba4311 (2020).

    [4] Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021).

    [5] M. Li, F. Fang, M. Sun, Y. Zhang, M. Hu et al., Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine. Theranostics 12, 4879–4903 (2022).

    [6] Y. Feng, Z. Zhang, W. Tang, Y. Dai, Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration 3, 20220173 (2023).

    [7] S. Matoori, A. Veves, D.J. Mooney, Advanced bandages for diabetic wound healing. Sci. Transl. Med. 13, eabe4839 (2021).

    [8] Y. Li, D. Hao, G. Feng, F.-J. Xu, A hydrogel wound dressing ideally designed for chronic wound care. Matter 6, 1060–1062 (2023).

    [9] M. Kharaziha, A. Baidya, N. Annabi, Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 33, e2100176 (2021).

    [10] J. Wang, X.-Y. Chen, Y. Zhao, Y. Yang, W. Wang et al., pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 13, 11686–11697 (2019).

    [11] X. Du, B. Jia, W. Wang, C. Zhang, X. Liu et al., pH-switchable nanozyme cascade catalysis: a strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J. Nanobiotechnol. 20, 12 (2022).

    [12] X. Ding, Y. Yu, C. Yang, D. Wu, Y. Zhao, Multifunctional GO hybrid hydrogel scaffolds for wound healing. Research 2022, 9850743 (2022).

    [13] R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021).

    [14] Q. Zeng, Q. Peng, F. Wang, G. Shi, H. Haick et al., Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics. Nano-Micro Lett. 15, 153 (2023).

    [15] L. Cai, D. Xu, H. Chen, L. Wang, Y. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021).

    [16] T. Cui, J. Yu, C.-F. Wang, S. Chen, Q. Li et al., Micro-gel ensembles for accelerated healing of chronic wound via pH regulation. Adv. Sci. 9, e2201254 (2022).

    [17] J. Lan, L. Shi, W. Xiao, X. Zhang, S. Wang, A rapid self-pumping organohydrogel dressing with hydrophilic fractal microchannels to promote burn wound healing. Adv. Mater. 35, e2301765 (2023).

    [18] Y.S. Zhang, C. Zhu, Y. Xia, Inverse opal scaffolds and their biomedical applications. Adv. Mater. 29, 1701115 (2017).

    [19] B. Gao, M. Guo, K. Lyu, T. Chu, B. He, Intelligent silk fibroin based microneedle dressing (i-SMD). Adv. Funct. Mater. 31, 2006839 (2021).

    [20] H. Wang, X. Chen, G. Xie, D. Bi, S. Du et al., Inverse opal photonic hydrogels for blue-edge slow photon-enhanced photodynamic antibacterial therapy. Adv. Funct. Mater. 33, 2306025 (2023).

    [21] Y. Wang, X. Zhang, G. Chen, M. Lu, Y. Zhao, Multifunctional structural color triboelectric microneedle patches for psoriasis treatment. Matter 6, 1555–1568 (2023).

    [22] L. Wang, G. Chen, L. Fan, H. Chen, Y. Zhao et al., Biomimetic enzyme cascade structural color hydrogel microparticles for diabetic wound healing management. Adv. Sci. 10, e2206900 (2023).

    [23] M. Lu, X. Zhang, D. Xu, N. Li, Y. Zhao, Encoded structural color microneedle patches for multiple screening of wound small molecules. Adv. Mater. 35, e2211330 (2023).

    [24] B.-D. Zheng, J. Ye, Y.-C. Yang, Y.-Y. Huang, M.-T. Xiao, Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr. Polym. 275, 118770 (2022).

    [25] L. Cai, Y. Wang, L. Sun, J. Guo, Y. Zhao, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv. Opt. Mater. 9, 2100831 (2021).

    [26] S. Kim, A.N. Mitropoulos, J.D. Spitzberg, H. Tao, D.L. Kaplan et al., Silk inverse opals. Nat. Photonics 6, 818 (2012).

    [27] J.E.S.V. Hoeven, A.V. Shneidman, N.J. Nicolas, J. Aizenberg, Evaporation-induced self-assembly of metal oxide inverse opals: from synthesis to applications. Acc. Chem. Res. 55, 1809–1820 (2022).

    [28] Y. Wang, L. Sun, G. Chen, H. Chen, Y. Zhao, Structural color ionic hydrogel patches for wound management. ACS Nano (2022).

    [29] Y. Zhao, R. Li, B. Wang, Y. Huang, P. Lyu et al., Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy. ACS Nano 17, 2893–2900 (2023).

    [30] Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. U.S.A. 119, e2204113119 (2022).

    [31] L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17, 15962–15977 (2023).

    [32] Z. Liu, W. Tang, J. Liu, Y. Han, Q. Yan et al., A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact. Mater. 20, 610–626 (2022).

    [33] P. Wang, L. Peng, J. Lin, Y. Li, Q. Luo et al., Enzyme hybrid virus-like hollow mesoporous CuO adhesive hydrogel spray through glucose-activated cascade reaction to efficiently promote diabetic wound healing. Chem. Eng. J. 415, 128901 (2021).

    [34] L. Wang, L. Sun, F. Bian, Y. Wang, Y. Zhao, Self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing. ACS Nano 16, 2640–2650 (2022).

    [35] Z. Shao, T. Yin, J. Jiang, Y. He, T. Xiang et al., Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 20, 561–573 (2022).

    [36] Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14, 185 (2022).

    [37] X. Garrabou, B.I.M. Wicky, D. Hilvert, Fast Knoevenagel condensations catalyzed by an artificial Schiff-base-forming enzyme. J. Am. Chem. Soc. 138, 6972–6974 (2016).

    [38] X. Ding, Y. Yu, W. Li, Y. Zhao, In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000–1014 (2023).

    [39] X. Ding, Y. Yu, L. Shang, Y. Zhao, Histidine-triggered GO hybrid hydrogels for microfluidic 3D printing. ACS Nano 16, 19533–19542 (2022).

    Li Wang, Xiaoya Ding, Lu Fan, Anne M. Filppula, Qinyu Li, Hongbo Zhang, Yuanjin Zhao, Luoran Shang. Self-Healing Dynamic Hydrogel Microparticles with Structural Color for Wound Management[J]. Nano-Micro Letters, 2024, 16(1): 232
    Download Citation