[4] REID J, SHEWCHUN J, GARSIDE B K, et al. Point monitoring of ambient concentrations of atmospheric gasesusing tunable lasers[J]. Optical Engineering, 1978, 17(1): 56-62.
[5] TAN X C, ZHANG H, LI J Y, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 2020, 11(1): 5245-5245.
[7] AMEDIEK A, EHRET G, FIX A, et al. CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions[J]. Applied Optics, 2017, 56(18): 5182-5197.
[8] SIOZOS P, PSYLLAKIS G, SAMARTZIS P C, et al. Autonomous differential absorption laser device for remote sensing of atmospheric greenhouse gases[J]. Remote Sens, 2022, 14: 460.
[11] DAI T X, WANG B, YU Y B, et al. The development of TDLAS CO2 gas detection system with VCSEL light source[C]//International Conference on Sensors and Instruments. Qingdao, China: The International Society for Optical Engineering, 2021: 118871U.
[13] PENG W Y, CHEN S, KONG D S, et al. Grade classification of human glioma using a convolutional neural network based on mid-infrared spectroscopy mapping[J]. Journal of Biophotonics, 2021, 15(4): e202100313.
[14] QIAO Z, XUE M F, ZHAO Y D, et al. Infrared nanoimaging of nanoscale sliding dislocation of collagen fibrils[J]. Nano Research, 2022, 15(3): 2355-2361.
[15] LI N, PENG D, ZHANG X, et al. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation[J]. Nano Research, 2021, 14(1): 40-45.
[16] CLAPS R, ENGLICH F V, LELEUX D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Applied Optics, 2001, 40(24): 4387-4394.
[18] LI W F, CHENG N J, QI F, et al. Output characteristics of 3-8 μm mid-infrared source based on BaGa4Se7 crystal[J]. Applied Optics, 2023, 62(1): 172-177.
[19] GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.
[20] CUI R Y, DONG L, WU H P, et al. Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy[J]. Optics Express, 2018, 26(19): 24318-24328.
[21] AZHAR M, MANDON J, NEERINCX A H, et al. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide(HCN) detection in exhaled breath[J]. Applied Physics B, 2017, 123(11): 268.