• Electro-Optic Technology Application
  • Vol. 38, Issue 6, 38 (2023)
GAO Long1,2,3,4,5, YU Yanfang1, QI Feng2,3,4,5, MA Yong6..., LU Yuan2,3,4,5,7, LI Wei2,3,4,5 and et al8|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • 6[in Chinese]
  • 7[in Chinese]
  • 8[in Chinese]
  • show less
    DOI: Cite this Article
    GAO Long, YU Yanfang, QI Feng, MA Yong, LU Yuan, LI Wei, et al. Research on CO2Detection Based on Mid-infrared Wave Source[J]. Electro-Optic Technology Application, 2023, 38(6): 38 Copy Citation Text show less
    References

    [3] KOCH G J, BARNES B W, PETROS M, et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 2004, 43(26): 5092-5099.

    [4] REID J, SHEWCHUN J, GARSIDE B K, et al. Point monitoring of ambient concentrations of atmospheric gasesusing tunable lasers[J]. Optical Engineering, 1978, 17(1): 56-62.

    [5] TAN X C, ZHANG H, LI J Y, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 2020, 11(1): 5245-5245.

    [7] AMEDIEK A, EHRET G, FIX A, et al. CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions[J]. Applied Optics, 2017, 56(18): 5182-5197.

    [8] SIOZOS P, PSYLLAKIS G, SAMARTZIS P C, et al. Autonomous differential absorption laser device for remote sensing of atmospheric greenhouse gases[J]. Remote Sens, 2022, 14: 460.

    [10] LAN L J, GHASEMIFARD H, YUAN Y, et al. Assessment of urban CO2 measurement and source attribution in munich based on TDLAS-WMS and trajectory analysis[J]. Atmosphere, 2020, 11(1): 58.

    [11] DAI T X, WANG B, YU Y B, et al. The development of TDLAS CO2 gas detection system with VCSEL light source[C]//International Conference on Sensors and Instruments. Qingdao, China: The International Society for Optical Engineering, 2021: 118871U.

    [13] PENG W Y, CHEN S, KONG D S, et al. Grade classification of human glioma using a convolutional neural network based on mid-infrared spectroscopy mapping[J]. Journal of Biophotonics, 2021, 15(4): e202100313.

    [14] QIAO Z, XUE M F, ZHAO Y D, et al. Infrared nanoimaging of nanoscale sliding dislocation of collagen fibrils[J]. Nano Research, 2022, 15(3): 2355-2361.

    [15] LI N, PENG D, ZHANG X, et al. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation[J]. Nano Research, 2021, 14(1): 40-45.

    [16] CLAPS R, ENGLICH F V, LELEUX D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Applied Optics, 2001, 40(24): 4387-4394.

    [18] LI W F, CHENG N J, QI F, et al. Output characteristics of 3-8 μm mid-infrared source based on BaGa4Se7 crystal[J]. Applied Optics, 2023, 62(1): 172-177.

    [19] GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

    [20] CUI R Y, DONG L, WU H P, et al. Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy[J]. Optics Express, 2018, 26(19): 24318-24328.

    [21] AZHAR M, MANDON J, NEERINCX A H, et al. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide(HCN) detection in exhaled breath[J]. Applied Physics B, 2017, 123(11): 268.

    GAO Long, YU Yanfang, QI Feng, MA Yong, LU Yuan, LI Wei, et al. Research on CO2Detection Based on Mid-infrared Wave Source[J]. Electro-Optic Technology Application, 2023, 38(6): 38
    Download Citation