• Advanced Photonics
  • Vol. 7, Issue 1, 016002 (2025)
Xuelin Zhang1, Jiangbing Du1,*, Ke Xu2, and Zuyuan He1
Author Affiliations
  • 1Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Harbin Institute of Technology (Shenzhen), Department of Electronic and Information Engineering, Shenzhen, China
  • show less
    DOI: 10.1117/1.AP.7.1.016002 Cite this Article Set citation alerts
    Xuelin Zhang, Jiangbing Du, Ke Xu, Zuyuan He, "Waveguide superlattices with artificial gauge field toward colorless and low-crosstalk ultrahigh-density photonic integration," Adv. Photon. 7, 016002 (2025) Copy Citation Text show less
    References

    [1] G. Roelkens et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev., 4, 751-779(2010).

    [2] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [3] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [4] X. Shen et al. Ultra-low-crosstalk silicon arrayed-waveguide grating (de) multiplexer with 1.6-nm channel spacing. Laser Photonics Rev., 18, 2300617(2024).

    [5] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [6] L. Liu. Densely packed waveguide array (DPWA) on a silicon chip for mode division multiplexing. Opt. Express, 23, 12135-12143(2015).

    [7] M. A. Taubenblatt. Optical interconnects for high-performance computing. J. Lightwave Technol., 30, 448-457(2011).

    [8] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [9] A. Szameit et al. Polychromatic dynamic localization in curved photonic lattices. Nat. Phys., 5, 271-275(2009).

    [10] Y.-J. Chang et al. Observation of a photonic orbital gauge field. Adv. Mater., 36, 2310010(2024).

    [11] M. Matuszewski et al. Crossover from self-defocusing to discrete trapping in nonlinear waveguide arrays. Opt. Express, 14, 254-259(2006).

    [12] W. Song et al. High-density waveguide superlattices with low crosstalk. Nat. Commun., 6, 7027(2015).

    [13] R. Gatdula et al. Guiding light in bent waveguide superlattices with low crosstalk. Optica, 6, 585-591(2019).

    [14] B. Shen, R. Polson, R. Menon. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking. Nat. Commun., 7, 13126(2016).

    [15] W. Song et al. Dispersionless coupling among optical waveguides by artificial gauge field. Phys. Rev. Lett., 129, 053901(2022).

    [16] P. Zhou et al. Artificial gauge field enabled low-crosstalk, broadband, half-wavelength pitched waveguide arrays. Laser Photonics Rev., 17, 2200944(2023).

    [17] X. Yi et al. Demonstration of an ultra-compact 8-channel sinusoidal silicon waveguide array for optical phased array. Opt. Lett., 47, 226-229(2022).

    [18] S. Jahani et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nat. Commun., 9, 1893(2018).

    [19] M. B. Mia et al. Exceptional coupling in photonic anisotropic metamaterials for extremely low waveguide crosstalk. Optica, 7, 881-887(2020).

    [20] C. Xiang et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 12, 6650(2021).

    [21] Y. Liu et al. Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings. Nat. Commun., 15, 3645(2024).

    [22] D. J. Blumenthal et al. Silicon nitride in silicon photonics. Proc. IEEE, 106, 2209-2231(2018).

    [23] X. Lu et al. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics, 15, 131-136(2021).

    [24] J. Liu et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [25] Y. Lin et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun., 13, 6362(2022).

    [26] X. Li et al. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica, 7, 218-225(2020).

    [27] M. Churaev et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun., 14, 3499(2023).

    [28] C. O. de Beeck et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386-393(2020).

    [29] I. L. Garanovich et al. Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep., 518, 1-79(2012).

    [30] S. Longhi. Multiband diffraction and refraction control in binary arrays of periodically curved waveguides. Opt. Lett., 31, 1857-1859(2006).

    [31] O. Bohigas, S. Tomsovic, D. Ullmo. Manifestations of classical phase space structures in quantum mechanics. Phys. Rep., 223, 43-133(1993).

    [32] J. Wang et al. On-chip ultra-high rejection and narrow bandwidth filter based on coherency-broken cascaded cladding-modulated gratings. Photonics Res., 12, 979-985(2024).

    [33] L.-M. Leng et al. Waveguide superlattice-based optical phased array. Phys. Rev. Appl., 15, 014019(2021).

    [34] S. Liu et al. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron., 15, 9(2022).

    [35] Z. Li et al. Process development of low-loss LPCVD silicon nitride waveguides on 8-inch wafer. Appl. Sci., 13, 3660(2023).

    [36] T. Li et al. Morphology engineering enabled mid-infrared ultra-dense waveguide array with low crosstalk. Laser Photonics Rev., 18, 2400297.

    [37] L. Zhang et al. Low-loss, ultracompact n-adjustable waveguide bends for photonic integrated circuits. Opt. Express, 31, 2792-2806(2023).

    [38] G. Alagappan, C. E. Png. Modal classification in optical waveguides using deep learning. J. Mod. Opt., 66, 557-561(2019).

    [39] X. Yi et al. On-chip silicon photonic nanohole metamaterials enabled high-density waveguide arrays. Opt. Express, 32, 19792-19800(2024).

    [40] J. A. Smith et al. Sin foundry platform for high performance visible light integrated photonics. Opt. Mater. Express, 13, 458-468(2023).

    [41] A. Li et al. Advances in cost-effective integrated spectrometers. Light Sci. Appl., 11, 174(2022).

    [42] Y. Liu, H. Hu. Silicon optical phased array with a 180-degree field of view for 2D optical beam steering. Optica, 9, 903-907(2022).

    [43] T. Fukui et al. Non-redundant optical phased array. Optica, 8, 1350-1358(2021).

    Xuelin Zhang, Jiangbing Du, Ke Xu, Zuyuan He, "Waveguide superlattices with artificial gauge field toward colorless and low-crosstalk ultrahigh-density photonic integration," Adv. Photon. 7, 016002 (2025)
    Download Citation