• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1214001 (2021)
Xiaoqin Yin1, Shuzhen Fan1、2、*, Yongfu Li1、2, Xingyu Zhang1、3, Zhaojun Liu1、3, Xian Zhao1、2, and Jiaxiong Fang1、2、4
Author Affiliations
  • 1Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao, Shandong 266237, China;
  • 2Center for Optics Research and Engineering (CORE), Shandong University, Qingdao, Shandong 266237, China
  • 3School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 4Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/CJL202148.1214001 Cite this Article Set citation alerts
    Xiaoqin Yin, Shuzhen Fan, Yongfu Li, Xingyu Zhang, Zhaojun Liu, Xian Zhao, Jiaxiong Fang. Theoretical Analysis of Terahertz-Wave Frequency Up-Conversion Detection Based on Coexisting Difference- and Sum-Frequency Generation[J]. Chinese Journal of Lasers, 2021, 48(12): 1214001 Copy Citation Text show less
    References

    [1] Sakai K. Terahertz optoelectronics. Topics in applied physics[M], 97, 203-377(2005).

    [2] Dragoman D, Dragoman M. Terahertz fields and applications[J]. Progress in Quantum Electronics, 28, 1-66(2004).

    [3] Fu Z L, Li R Z, Li H Y et al. Progress in biomedical imaging based on terahertz quantum cascade lasers[J]. Chinese Journal of Lasers, 47, 0207014(2020).

    [4] Zhang X, Zhao Y M, Deng C et al. Study on the passive terahertz image target detection[J]. Acta Optica Sinica, 33, 0211002(2013).

    [5] Liu Y D, Xu Z, Hu J et al. Research on quality of agricultural products by terahertz spectroscopy[J]. Laser & Optoelectronics Progress, 58, 0100005(2021).

    [6] Lewis R A. A review of terahertz detectors[J]. Journal of Physics D, 52, 433001(2019).

    [7] Guo R X, Ohno S, Minamide H et al. Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process[J]. Applied Physics Letters, 93, 021106(2008). http://scitation.aip.org/content/aip/journal/apl/93/2/10.1063/1.2953452

    [8] Khan M J, Chen J C, Kaushik S. Optical detection of terahertz radiation by using nonlinear parametric upconversion[J]. Optics Letters, 32, 3248-3250(2007).

    [9] Ding Y J. Selection of optimum nonlinear crystals for efficient parametric generation and sensitive detection of monochromatic ns THz pulses[J]. MRS Online Proceedings Library, 1016, 201(2007). http://journals.cambridge.org/abstract_S194642740003846X

    [10] Minamide H, Zhang J, Guo R X et al. High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal[J]. Applied Physics Letters, 97, 121106(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5585863

    [11] Qi F, Fan S Z, Notake T et al. 10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer[J]. Optics Letters, 39, 1294-1297(2014). http://www.ncbi.nlm.nih.gov/pubmed/24690730

    [12] Fan S Z, Qi F, Notake T et al. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal[J]. Optics Express, 23, 7611-7618(2015).

    [13] Yin X Q, Liu J L, Fan S Z et al. Theoretical exploration of terahertz single-photon detection and imaging by nonlinear optical frequency up-conversion[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 1267-1279(2020). http://link.springer.com/article/10.1007/s10762-020-00734-x

    [14] Qi F, Fan S Z, Notake T et al. An ultra-broadband frequency-domain terahertz measurement system based on frequency conversion via DAST crystal with an optimized phase-matching condition[J]. Laser Physics Letters, 11, 085403(2014). http://adsabs.harvard.edu/abs/2014LaPhL..11h5403Q

    [15] Pfeiffer T, Kutas M, Haase B et al. Terahertz detection by upconversion to the near-infrared using picosecond pulses[J]. Optics Express, 28, 29419-29429(2020).

    [16] Shen Y R. Nonlinear infrared generation[M], 19-133(1977).

    [17] Schneider A, Stillhart M, Günter P. High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths[J]. Optics Express, 14, 5376-5384(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000005000008000073000001&idtype=cvips&gifs=Yes

    [18] Jazbinsek M, Mutter L, Gunter P. Photonic applications with the organic nonlinear optical crystal DAST[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 1298-1311(2008). http://ieeexplore.ieee.org/document/4519810/references

    [19] Ohno S, Miyamoto K, Minamide H et al. New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region[J]. Optics Express, 18, 17306-17312(2010).

    [20] Ito H, Miyamoto K, Minamide H. Ultra-broadband, frequency-agile THz-wave generator and its applications[C]. //Advanced Solid-State Photonics, January 27-30, 2008, Nara, Japan, WD1(2008).

    [21] Manivannan M, Dhas S A M B, Balakrishnan M et al. Study of optical and laser damage threshold in EDTA and DTPA-doped DAST single crystals[J]. Applied Physics B, 124, 166(2018).

    Xiaoqin Yin, Shuzhen Fan, Yongfu Li, Xingyu Zhang, Zhaojun Liu, Xian Zhao, Jiaxiong Fang. Theoretical Analysis of Terahertz-Wave Frequency Up-Conversion Detection Based on Coexisting Difference- and Sum-Frequency Generation[J]. Chinese Journal of Lasers, 2021, 48(12): 1214001
    Download Citation