• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 1, 162 (2022)
SHI Magang1、*, KE Guojun1、2、3, ZOU Pinyu1、2、3, SONG Baixing1、2、3, TANG Xiaolin1、2、3, and JIN Dan1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    SHI Magang, KE Guojun, ZOU Pinyu, SONG Baixing, TANG Xiaolin, JIN Dan. Research Progress of Hydration, Mechanical and Dry Shrinkage Properties of Alkali-Activated Slag Cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 162 Copy Citation Text show less
    References

    [1] CUNNINGHAM P R, MILLER S A. Quantitative assessment of alkali-activated materials: environmental impact and property assessments[J]. Journal of Infrastructure Systems, 2020, 26(3): 04020021.

    [2] MASTALI M, KINNUNEN P, DALVAND A, et al. Drying shrinkage in alkali-activated binders: a critical review[J]. Construction and Building Materials, 2018, 190: 533-550.

    [5] SINGH N B, MIDDENDORF B. Geopolymers as an alternative to Portland cement: an overview[J]. Construction and Building Materials, 2020, 237: 117455.

    [6] THOMAS R J, LEZAMA D, PEETHAMPARAN S. On drying shrinkage in alkali-activated concrete: improving dimensional stability by aging or heat-curing[J]. Cement and Concrete Research, 2017, 91: 13-23.

    [10] LI Y, SUN H H, LIU X M, et al. Effect of phase separation structure on cementitious reactivity of blast furnace slag[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2695-2699.

    [11] MOSTAFA N Y, EL-HEMALY S A S, AL-WAKEEL E I, et al. Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag[J]. Cement and Concrete Research, 2001, 31(6): 899-904.

    [15] LI C, SUN H H, LI L T. A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research, 2010, 40(9): 1341-1349.

    [16] SKIBSTED J, SNELLINGS R. Reactivity of supplementary cementitious materials (SCMs) in cement blends[J]. Cement and Concrete Research, 2019, 124: 105799.

    [17] QIN Y L, LIU H, YANG Y H. Structure evolution of blast furnace slag with high Al2O3 Content and 5 mass% TiO2 via molecular dynamics simulation and Fourier transform infrared spectroscopy[J]. Metallurgical Research & Technology, 2017, 115(1): 113.

    [18] LIANG D, YAN Z M, LV X, et al. Transition of blast furnace slag from silicate-based to aluminate-based: structure evolution by molecular dynamics simulation and Raman spectroscopy[J]. Metallurgical and Materials Transactions B, 2017, 48(1): 573-581.

    [19] DUXSON P, PROVIS J L. Designing precursors for geopolymer cements[J]. Journal of the American Ceramic Society, 2008, 91(12): 3864-3869.

    [20] SHIMODA K, TOBU Y, KANEHASHI K, et al. Total understanding of the local structures of an amorphous slag: perspective from multi-nuclear (29Si, 27Al, 17O, 25Mg, and 43Ca) solid-state NMR[J]. Journal of Non-Crystalline Solids, 2008, 354(10/11): 1036-1043.

    [21] LIU Y, LV X, LI B, et al. Relationship between structure and viscosity of CaO-SiO2-MgO-30.00wt% Al2O3 slag by molecular dynamics simulation with FT-IR and Raman spectroscopy[J]. Ironmaking & Steelmaking, 2018, 45(6): 492-501.

    [22] HU X G, SHEN F M, ZHENG H Y, et al. Effect of melt structure property on Al2O3 activity in CaO-SiO2-Al2O3-MgO system for blast furnace slag with different Al2O3 content[J]. Metallurgical Research & Technology, 2021, 118(5): 515.

    [23] KINNUNEN P, SREENIVASAN H, CHEESEMAN C R, et al. Phase separation in alumina-rich glasses to increase glass reactivity for low-CO2 alkali-activated cements[J]. Journal of Cleaner Production, 2019, 213: 126-133.

    [30] ALLAHVERDI A, SHAVERDI B, KANI E. N. influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag[J]. International Journal of Civil Engineering, 2010, 8(4): 304-314.

    [31] CARTWRIGHT C, RAJABIPOUR F, RADLIN'SKA A. Shrinkage characteristics of alkali-activated slag cements[J]. Journal of Materials in Civil Engineering, 2015, 27(7).

    [33] GEBREGZIABIHER B S, THOMAS R, PEETHAMPARAN S. Very early-age reaction kinetics and microstructural development in alkali-activated slag[J]. Cement and Concrete Composites, 2015, 55: 91-102.

    [34] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015, 48(3): 517-529.

    [35] YANG B, JANG J G. Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator[J]. Construction and Building Materials, 2020, 257: 119552.

    [36] BILGINER A, CANBEK O, TURHAN ERDOAN S. Activation of blast furnace slag with soda production waste[J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019316.

    [37] RAKHIMOVA N R, RAKHIMOV R Z. Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste[J]. Materials & Design, 2015, 85: 324-331.

    [38] DING Y, DAI J G, SHI C J. Mechanical properties of alkali-activated concrete: a state-of-the-art review[J]. Construction and Building Materials, 2016, 127: 68-79.

    [39] WARDHONO A, GUNASEKARA C, LAW D W, et al. Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes[J]. Construction and Building Materials, 2017, 143: 272-279.

    [41] TNZER R, JIN Y, STEPHAN D. Alkali activated slag binder: effect of cations from silicate activators[J]. Materials and Structures, 2016, 50(1): 1-9.

    [43] VILAPLANA J L, BAEZA F J, GALAO O, et al. Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers[J]. Construction and Building Materials, 2016, 116: 63-71.

    [44] LIU J P, TIAN Q, MIAO C W. Investigation on the plastic shrinkage of cementitious materials under drying conditions: mechanism and theoretical model[J]. Magazine of Concrete Research, 2012, 64(6): 551-561.

    [45] YE H L, RADLIN'SKA A. Shrinkage mechanisms of alkali-activated slag[J]. Cement and Concrete Research, 2016, 88: 126-135.

    [46] GRASLEY Z C, LEUNG C K. Desiccation shrinkage of cementitious materials as an aging, poroviscoelastic response[J]. Cement and Concrete Research, 2011, 41(1): 77-89.

    [47] GRASLEY Z C, LANGE D A, D'AMBROSIA M D. Internal relative humidity and drying stress gradients in concrete[J]. Materials and Structures, 2006, 39(9): 901-909.

    [50] HANSEN T C. Drying shrinkage of concrete due to capillary action[J]. Matériaux et Construction, 1969, 2(1): 7-9.

    [51] COLLINS F, SANJAYAN J G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1401-1406.

    [52] HANSEN W. Drying shrinkage mechanisms in Portland cement paste[J]. Journal of the American Ceramic Society, 1987, 70(5): 323-328.

    [53] YE H L, CARTWRIGHT C, RAJABIPOUR F, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars[J]. Cement and Concrete Composites, 2017, 76: 13-24.

    [55] MELO N A A, CINCOTTO M A, REPETTE W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cement and Concrete Research, 2008, 38(4): 565-574.

    [56] BALLEKERE K D, PEETHAMPARAN S, NGAMI M. Autogenous shrinkage of alkali activated slag mortars: basic mechanisms and mitigation methods[J]. Cement and Concrete Research, 2018, 109: 1-9.

    [57] BAKHAREV T, SANJAYAN J G, CHENG Y B. Effect of admixtures on properties of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1367-1374.

    [58] AYDIN S. A ternary optimisation of mineral additives of alkali activated cement mortars[J]. Construction and Building Materials, 2013, 43: 131-138.

    [59] ABDOLLAHNEJAD Z, MASTALI M, WOOF B, et al. High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance[J]. Construction and Building Materials, 2020, 241: 118129.

    SHI Magang, KE Guojun, ZOU Pinyu, SONG Baixing, TANG Xiaolin, JIN Dan. Research Progress of Hydration, Mechanical and Dry Shrinkage Properties of Alkali-Activated Slag Cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 162
    Download Citation