• High Power Laser and Particle Beams
  • Vol. 32, Issue 4, 042001 (2020)
Bi Bi1, Weimin Zhou1、*, Lianqiang Shan1, Lai Wei1, Dongxiao Liu1, Feng Zhang1, Chao Tian1, Zhigang Deng1, zongqiang Yuan1, Weiwu Wang1, Feng Lu1, Junfeng Wu2, Hongbo Cai2, Guoli Ren2, Fengjuan Wu3, jin Li1, Tao Chen1, Yimeng Yang1, Faqiang Zhang1, Lei Yang1, Leifeng Cao1, and Yuqiu Gu1、*
Author Affiliations
  • 1Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • 3Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
  • show less
    DOI: 10.11884/HPLPB202032.200050 Cite this Article
    Bi Bi, Weimin Zhou, Lianqiang Shan, Lai Wei, Dongxiao Liu, Feng Zhang, Chao Tian, Zhigang Deng, zongqiang Yuan, Weiwu Wang, Feng Lu, Junfeng Wu, Hongbo Cai, Guoli Ren, Fengjuan Wu, jin Li, Tao Chen, Yimeng Yang, Faqiang Zhang, Lei Yang, Leifeng Cao, Yuqiu Gu. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32(4): 042001 Copy Citation Text show less
    References

    [1] Tabak M, Hammer J, Glinsky M E. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1, 1626-1634(1994).

    [2] Kodama R, Norreys P A, Mima K. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 412, 798-802(2001).

    [4] Jarrott L C, Wei M S, McGuffey C. Visualizing fast electron energy transport into laser-compressed high density fast ignition targets[J]. Nature Physics, 12, 499-504(2016).

    [5] Theobald W, Solodov A A, Stoeckl C. Initial cone-in-shell fast ignition experiments on OMEGA[J]. Phys Plasmas, 18, 056305(2011).

    [6] Stephens R B, Hatchett S P, Turner R E. Implosion of indirectly driven reentrant-cone shell target[J]. Phys Rev Lett, 91, 185001(2003).

    [7] Tanaka K A, Kodama R, Mima K. Basic and integrated studies for fast ignition[J]. Phys Plasmas, 10, 1925-1930(2003).

    [8] Stephens R B, Hatchett S P, Tabak M. Implosion hydrodynamics of fast ignition targets[J]. Phys Plasmas, 12, 056312(2005).

    [9] Betti R, Zhou C. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion[J]. Phys Plasmas, 12, 110702(2005).

    [10] Zhou C D, Theobald W, Betti R. High-ρR implosions for fast-ignition fuel assembly[J]. Phys Rev Lett, 98, 025004(2007).

    [12] He X T, Cai H B, Wu S Z. Physical studies of fast ignition in China[J]. Plasma Physics and Controlled Fusion, 57, 064003(2015).

    [14] Theobald W, Solodov A A, Stoeckl C. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion[J]. Nature Communications, 5, 5785(2014).

    [15] Yi S Z, Zhang Z, Huang Q S. Eight-channel Kirkpatrick-Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments[J]. Review of Scientific Instruments, 87, 103501(2016).

    Bi Bi, Weimin Zhou, Lianqiang Shan, Lai Wei, Dongxiao Liu, Feng Zhang, Chao Tian, Zhigang Deng, zongqiang Yuan, Weiwu Wang, Feng Lu, Junfeng Wu, Hongbo Cai, Guoli Ren, Fengjuan Wu, jin Li, Tao Chen, Yimeng Yang, Faqiang Zhang, Lei Yang, Leifeng Cao, Yuqiu Gu. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32(4): 042001
    Download Citation