[1] Kim K Y, Yoon S H, Kim I K, et al. Flexible narrowband organic photodiode with high selectivity in color detection[J].Nanotechnol., 2019, 30(43): 435203.
[2] Cao G Q, Wang F, Peng M, et al.. Multicolor broadband and fast photodetector based on InGaAs-insulator-graphene hybrid heterostructure[J]. Advanced Electronic Materials, 2020, 6(3): 1901007.
[3] Jansen-Van Vuuren R D, Armin A, Pandey A K, et al.Organic photodiodes: The future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.
[4] Liu X D, Lin Y W, Liao Y J, et al. Recent advances in organic near-infrared photodiodes [J]. J. of Materials Chemistry C, 2018, 6(14): 3499-3513.
[5] Miao J L, Zhang F J. Recent progress on photomultiplication type organic photodetectors[J]. Laser & Photonics Reviews,2019, 13(2): 1800204.
[6] Ren H, Chen J D, Li Y Q, et al. Recent progress in organic photodetectors and their applications[J]. Adv. Science, 2021,8(1): 2002418.
[7] Yang K X, Wang J, Zhao Z J, et al. Smart strategy:Transparent hole-transporting polymer as a regulator to optimize photomultiplication-type polymer photodetectors[J].ACS Appl. Materials & Interfaces, 2021, 13(18): 21565-21572.
[8] Baeg K J, Binda M, Natali D, et al. Organic light detectors:photodiodes and phototransistors[J]. Advanced Materials.,2013, 25(31): 4267-4295.
[9] Zhao Z J, Li C L, Shen L, et al. Photomultiplication type organic photodetectors based on electron tunneling injection[J]. Nanoscale, 2020, 12(2): 1091-1099.
[10] Kim K Y, Yoon S H, Kim I K, et al. Flexible narrowband organic photodiode with high selectivity in color detection[J].Nanotechnol., 2019, 30(43): 435203.
[11] Miao J L, Zhang F J. Recent progress on photomultiplication type organic photodetectors[J]. Laser & Photonics Reviews,2019, 13(2): 1800204.
[12] Xiao Z, Xu H T, Liang W Y, et al. Effective film surface treatment for improving external quantum efficiency of photomultiplication type organic photodetector[J]. High Performance Polymers, 2021, 33(9): 1093-1105.
[13] Yang K X, Wang J, Zhao Z J, et al. Smart strategy:Transparent hole-transporting polymer as a regulator to optimize photomultiplication-type polymer photodetectors[J]. ACS Appl. Materials & Interfaces, 2021, 13(18):21565-21572.
[14] Wang Y Z, Kublitski J, Xing S, et al. Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing[J]. Materials Horizons, 2022, 9(1): 220-251.
[15] Zhao Z J, Xu C Y, Ma Y, et al. Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture [J]. Advanced Functional Materials, 2022, 32(29): 2203606.
[16] Kim J H, Liess A, Stolte M, et al. An efficient narrowband near-infrared at 1040nm organic photodetector realized by intermolecular charge transfer mediated coupling based on a squaraine dye[J]. Advanced Materials, 2021, 33(26):2100582.
[17] Liu J S, Jiang J Z, Wang S P, et al. Fast response organic tandem photodetector for visible and near-infrared digital optical communications[J]. Small, 2021, 17(43): 2101316.
[18] Shi L, Liang Q, Wang W, et al. Research progress in organic photomultiplication photodetectors [J].Nanomaterials, 2018, 8(9): 713.
[19] Hiramoto M, Imahigashi T, Yokoyama M. Photocurrent multiplication in organic pigment films[J]. Appl. Phys.Lett., 1994, 64(2): 187-189.
[20] Chen F C, Chien S C, Cious G L. Highly sensitive, lowvoltage,organic photomultiple photodetectors exhibiting broadband response[J]. Appl. Phys. Lett., 2010, 97(10):103301.
[21] Huang J S, Guo F W, Yang B, et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nature Nanotechnol., 2012, 7(12):798-802.
[22] Chuang S T, Chien S C, Chen F C. Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants[J]. Appl. Phys. Lett.,2012, 100(1): 013309.
[23] Hammond W T, Xue J G. Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain[J]. Appl. Phys. Lett., 2010, 97(7):073302.
[24] Luo X, Lv W L, Du L L, et al. Insight into trap state dynamics for exploiting current multiplication in organic photodetectors[J]. Physica Status Solidi (RRL)-Rapid Research Lett., 2016, 10(6): 485-492.
[25] Kublitski J, Fischer A, Xing S, et al. Enhancing subbandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors[J].Nature Communications, 2021, 12(1): 4259.
[26] Fang Y J, Guo F W, Xiao Z G, et al. Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120dB[J]. Advanced Optical Materials,2014, 2(4): 348-353.
[27] Wei H T, Fang Y J, Yuan Y B, et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT∶CdTe nanocomposite photodetectors[J]. Advanced Materials, 2015, 27(34): 4975-4981.
[28] Shen L, Fang Y J, Dong Q F, et al. Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection[J]. Appl. Phys.Lett., 2015, 106(2): 023301.
[29] Dong R, Bi C, Dong Q F, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain [J].Advanced Optical Materials, 2014, 2(6): 549-554.
[30] Zhu T, Zheng L Y, Yao X, et al. Ultrasensitive solutionprocessed broadband PbSe photodetectors through photomultiplication effect[J]. ACS Appl. Mater. Interfaces,2019, 11(9): 9205-9212.
[31] Guo D C, Yang L Q, Li J, et al. Panchromatic photomultiplication-type organic photodetectors with planar/bulk heterojunction structure[J]. Science China Materials,2022, 66(3): 1172-1179.
[32] Li L L, Zhang F J, Wang W B, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37,500% [J]. ACS Appl.Mater. Interfaces, 2015, 7(10): 5890-5897.
[33] Wang W B, Zhang F J, Bai H T, et al. Photomultiplication photodetectors with P3HT∶fullerene-free material as the active layers exhibiting a broad response[J]. Nanoscale,2016, 8(10): 5578-5586.
[34] Yang K X, Wang J, Zhao Z J, et al. Ultraviolet to nearinfrared broadband organic photodetectors with photomultiplication[J]. Organic Electronics, 2020, 83:105739.
[35] Liu M, Miao J L, Wang J, et al. Broadband organic photodetectors exhibiting photomultiplication with a narrow bandgap non-fullerene acceptor as an electron trap[J]. J. of Materials Chemistry C, 2020, 8(29): 9854-9860.
[37] Yang K X, Zhao Z J, Liu M, et al. Highly sensitive broadband photomultiplication type all-polymer photodetectors and their applications in optical pulse counting[J]. J. of Materials Chemistry C, 2022, 10(30): 10888-10894.
[38] Zhao Z J, Wang J, Xu C Y, et al. Photomultiplication type broad response organic photodetectors with one absorber layer and one multiplication layer[J]. J. Phys. Chem.Lett., 2020, 11(2): 366-373.
[39] Liu M Y, Wang J, Yang K X, et al. Broadband photomultiplication organic photodetectors[J]. Phys. Chem.Chem. Phys., 2021, 23(4): 2923-2929.
[40] Liu M, Wang J, Yang K X, et al. Highly sensitive, broadband organic photomultiplication-type photodetectors covering UV-Vis-NIR[J]. J. Mater. Chem. C, 2021, 9(19): 6357-6364.
[41] Liu M, Fan Q P, Wang J, et al. Double-layered strategy for broadband photomultiplication-type organic photodetectors and achieving narrowband response in violet, red, and nearinfrared light[J]. ACS Appl. Mater. Interfaces, 2022, 14(40): 45636-45643.
[42] Wang W B, Zhang F J, Du M D, et al. Highly narrowband photomultiplication type organic photodetectors[J]. Nano Lett., 2017, 17(3): 1995-2002.
[43] Armin A, Vuuren R D J-V, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes[J]. Nature Communications, 2015, 6(1): 6343.
[44] Xie B M, Xie R H, Zhang K, et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation [J].Nature Communications, 2020, 11(1): 2871.
[45] Shen L, Fang Y J, Wei H T, et al. A highly sensitive narrowband nanocomposite photodetector with gain[J].Advanced Materials, 2016, 28(10): 2043-2048.
[46] Shen L, Zhang Y, Bai Y, et al. A filterless, visible-blind,narrow-band, and near-infrared photodetector with a gain[J]. Nanoscale, 2016, 8(26): 12990-12997.
[47] Miao J L, Zhang F U, Du M D, et al. Photomultiplication type narrowband organic photodetectors working at forward and reverse bias[J]. Phys. Chem. Chem. Phys., 2017, 19(22): 14424-14430.
[48] Liu M, Wang J, Zhao Z J, et al. Ultra-narrow-band NIR photomultiplication organic photodetectors based on charge injection narrowing[J]. J. Phys. Chem. Lett., 2021, 12(11): 2937-2943.
[50] Guo D C, Yang L Q , Zhao J C , et al. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1000000[J]. Mater. Horiz., 2021, 8(8): 2293-2302.
[51] Zhao Z J, Liu M, Yang K X, et al. Highly sensitive narrowband photomultiplication-type organic photodetectors prepared by transfer-printed technology [J]. Advanced Functional Materials, 2021, 31(43): 2106009.
[52] Liu M, Yang K X, Zhao Z J, et al. Narrowband photomultiplication organic photodetectors by employing phosphorescent material as optical field adjusting layer[J].The J. of Physical Chemistry C, 2021, 125(33): 18536-18542.
[53] Zhao Z J, Xu C Y, Ma Y, et al. Filter-free narrowband photomultiplication-type planar heterojunction organic photodetectors[J]. Advanced Functional Materials, 2022, 33(9): 2212149.
[54] Zhao Z J, Xu C Y, Ma Y, et al. Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture [J]. Advanced Functional Materials, 2022, 32(29): 2203606.
[55] Jiao J, Zhang Y, Shi L L, et al. High responsivity of narrowband photomultiplication organic photodetector via interfacial modification[J]. Advanced Optical Materials,2023, 11(12): 2203132.