• Frontiers of Optoelectronics
  • Vol. 2, Issue 2, 141 (2009)
Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, and Sailing HE*
Author Affiliations
  • Centre for Optical and Electromagnetic Research, Joint Research Center of Photonics of the Royal Institute of Technology (Sweden) and Zhejiang University, Zhejiang University, Hangzhou 310058, China
  • show less
    DOI: 10.1007/s12200-009-0012-1 Cite this Article
    Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Frontiers of Optoelectronics, 2009, 2(2): 141 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P, Schuman J S, StinsonWG, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science, 1991, 254(5035): 1178-1181

    [2] Barton J K, Hoying J B, Sullivan C J. Use of microbubbles as an optical coherence tomography contrast agent. Academic Radiology, 2002, 9(1): S52-S55

    [3] Lee T M, Oldenburg A L, Sitafalwalla S, Marks D L, Luo W, Toublan F J J, Suslick K S, Boppart S A. Engineered microsphere contrast agents for optical coherence tomography. Optics Letters, 2003, 28(17): 1546-1548

    [4] Boppart S A, Oldenburg A L, Xu C, Marks D L. Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics, 2005, 10(4): 041208

    [5] Murphy C J, Gole A M, Stone J W, Sisco P N, Alkilany A M, Goldsmith E C, Baxter S C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of Chemical Research, 2008, 41(12): 1721-1730

    [6] Connor E E, Mwamuka J, Gole A, Murphy C J, Wyatt M D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3): 325-327

    [7] Sonnichsen C, Franzl T,Wilk T, Von Plessen G, Feldmann J,Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 2002, 88(7): 077402

    [8] Zagaynova E V, Shirmanova M V, Kirillin M Y , Khlebtsov B N, Orlova A G, Balalaeva I V, Sirotkina M A, Bugrova M L, Agrba P D, Kamensky VA. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Physics in Medicine and Biology, 2008, 53(18):4995-5009

    [9] Cang H, Sun T, Li Z Y, Chen J, Wiley B J, Xia Y, Li X. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters, 2005, 30(22): 3048-3050

    [10] Oldenburg A L, Hansen M N, Zweifel D A, Wei A, Boppart S A. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express, 2006, 14(15): 6724-6738

    [11] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B, 2001, 105(19): 4065-4067

    [12] Huang X, El-Sayed I H, Qian W, El-Sayed M A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006, 128(6): 2115-2120

    [13] Troutman T S, Barton J K, Romanowski M. Optical coherence tomography with plasmon resonant nanorods of gold. Optics Letters, 2007, 32(11): 1438-1440

    [14] Adler D C, Huang S, Huber R, Fujimoto J G. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express, 2008, 16(7): 4376-4393

    [15] Skala M C, Crow M J, Wax A, Izatt J A. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Letters, 2008, 8(10): 3461-3467

    [16] Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 2006, 110(14): 7238-7248

    [17] Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622-627

    [18] Prescott S W, Mulvaneya P. Gold nanorod extinction spectra. Journal of Applied Physics, 2006, 99(12): 123504

    [19] Babak N, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry Materials, 2003, 15(10): 1957-1962

    [20] Swartling J, Dam J S, Andersson-Engels S. Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties. Applied Optics, 2003, 42(22): 4612-4621

    [21] Zaccanti G, Bianco S D, Marelli F. Measurements of optical properties of high-density media. Applied Optics, 2003, 42(19): 4023-4030

    [22] Van Leeuwen T G, Faber D J, Aalders M C. Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 227-234

    [23] Schmitt J M, Knuttel A, Bonner R F. Measurement of optical properties of biological tissues by low coherence reflectometry. Applied Optics, 1993, 32(30): 6032-6042

    [24] Schmitt JM, Xiang S H, Yung KM. Differential absorption imaging with optical coherence tomography. Journal of the Optical Society of American A, 1998, 15(9): 2288-2296

    Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Frontiers of Optoelectronics, 2009, 2(2): 141
    Download Citation