• Chinese Optics Letters
  • Vol. 21, Issue 4, 041405 (2023)
Qiangqiang Guo1、2, Jinchuan Zhang1、2、*, Yixuan Zhu1、2, Xu Gao1, Quanyong Lu3, Ning Zhuo1、**, Shenqiang Zhai1, Junqi Liu1、2, Lijun Wang1、2, Shuman Liu1、2, and Fengqi Liu1、2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Division of Quantum Materials and Devices, Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.3788/COL202321.041405 Cite this Article Set citation alerts
    Qiangqiang Guo, Jinchuan Zhang, Yixuan Zhu, Xu Gao, Quanyong Lu, Ning Zhuo, Shenqiang Zhai, Junqi Liu, Lijun Wang, Shuman Liu, Fengqi Liu. Room-temperature continuous-wave InP-based 2.01 µm microcavity lasers in whispering-gallery modes with InGaAsSb quantum well[J]. Chinese Optics Letters, 2023, 21(4): 041405 Copy Citation Text show less
    References

    [1] W. Lei, C. Jagadish. Lasers and photodetectors for mid-infrared 2–3 µm applications. J. Appl. Phys., 104, 091101(2008).

    [2] L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, J. Vander Auwera. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 110, 533(2009).

    [3] A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, A. Forchel. Mid-infrared semiconductor heterostructure lasers for gas sensing applications. Semicond. Sci. Technol., 26, 014032(2011).

    [4] H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, V. Roberts. Atmospheric transmission in the 1 to 14 µm region. Proc. R. Soc. A, 206, 87(1951).

    [5] Q. Guo, J. Zhang, K. Yang, Y. Zhu, Q. Lu, N. Zhuo, S. Zhai, J. Liu, L. Wang, S. Liu, F. Liu. Monolithically integrated mid-infrared sensor with a millimeter-scale sensing range. Opt. Express, 30, 40657(2022).

    [6] B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat. Commun., 5, 4085(2014).

    [7] D. Ristanic, B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback. Appl. Phys. Lett., 106, 041101(2015).

    [8] B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, G. Strasser. A bi-functional quantum cascade device for same frequency lasing and detection. Appl. Phys. Lett., 101, 191109(2012).

    [9] B. Schwarz, D. Ristanic, P. Reininger, T. Zederbauer, D. MacFarland, H. Detz, A. Andrews, W. Schrenk, G. Strasser. High-performance bi-functional quantum cascade laser and detector. Appl. Phys. Lett., 107, 071104(2015).

    [10] B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, F. Capasso. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics, 4, 1225(2017).

    [11] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).

    [12] A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G. C. Righini. Spherical whispering-gallery-mode microresonators. Laser Photon. Rev., 4, 457(2010).

    [13] J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, A. Y. Cho. Quantum cascade disk lasers. Appl. Phys. Lett., 69, 2456(1996).

    [14] L. He, S. K. Ozdemir, L. Yang. Whispering gallery microcavity lasers. Laser Photonics Rev., 7, 60(2013).

    [15] M. H. Mao, H. C. Chien, J. Z. Hong, C. Y. Cheng. Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission. Opt. Express, 19, 14145(2011).

    [16] I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, E. L. Hu. Low threshold, room-temperature microdisk lasers in the blue spectral range. Appl. Phys. Lett., 103, 021112(2013).

    [17] Q. Guo, J. Zhang, C. Ning, N. Zhuo, S. Zhai, J. Liu, L. Wang, S. Liu, Z. Jia, F. Liu. Continuous-wave operation of microcavity quantum cascade lasers in whispering-gallery mode. ACS Photonics, 9, 1172(2022).

    [18] Q. Guo, J. Zhang, R. Yin, N. Zhuo, Q. Lu, S. Zhai, J. Liu, L. Wang, S. Liu, F. Liu. Continuous-wave microcavity quantum cascade lasers in whispering-gallery modes up to 50°C. Opt. Express, 30, 22671(2022).

    [19] S. Sprengel, C. Grasse, K. Vizbaras, T. Gruendl, M.-C. Amann. Up to 3 µm light emission on InP substrate using GaInAs/GaAsSb type-II quantum wells. Appl. Phys. Lett., 99, 221109(2011).

    [20] A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, K. Vizbaras. High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm. Proc. SPIE, 8993, 899319(2014).

    [21] K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, A. N. Baranov. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 µm. Appl. Phys. Lett., 107, 111109(2015).

    [22] I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. Ryan Lindle, C. D. Merritt, J. Abell, J. R. Meyer. Mid-IR type-II interband cascade lasers. IEEE J. Sel. Top. Quantum Electron., 17, 1435(2011).

    [23] Y. Jiang, L. Li, R. Q. Yang, J. A. Gupta, G. C. Aers, E. Dupont, J.-M. Baribeau, X. Wu, M. B. Johnson. Type-I interband cascade lasers near 3.2 µm. Appl. Phys. Lett., 106, 041117(2015).

    [24] C. Ning, R. Sun, S. Liu, J. C. Zhang, N. Zhuo, J. Liu, L. Wang, S. Zhai, F. Liu, Z. G. Wang. GaSb surface grating distributed feedback interband cascade laser emitting at 3.25 µm. Opt. Express, 30, 29007(2022).

    [25] D. Wang, J. Zhang, C. Hou, Y. Zhao, F. Cheng, X. Jia, S. Zhai, N. Zhuo, J. Liu, F. Liu, Z. Wang. High-performance continuous-wave InP-based 2.1 µm superluminescent diode with InGaAsSb quantum well and cavity structure suppression. Appl. Phys. Lett., 113, 161107(2018).

    [26] S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, T. Yang. High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy. Opt. Express, 23, 8383(2015).

    [27] Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, S. Xi. 2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature. Appl. Phys. Express, 7, 032701(2014).

    [28] D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, Z. Wang. Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant. Appl. Phys. Lett., 113, 251101(2018).

    [29] Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso. Whispering-gallery mode resonators for highly unidirectional laser action. Proc. Natl. Acad. Sci. U.S.A., 107, 22407(2010).

    Qiangqiang Guo, Jinchuan Zhang, Yixuan Zhu, Xu Gao, Quanyong Lu, Ning Zhuo, Shenqiang Zhai, Junqi Liu, Lijun Wang, Shuman Liu, Fengqi Liu. Room-temperature continuous-wave InP-based 2.01 µm microcavity lasers in whispering-gallery modes with InGaAsSb quantum well[J]. Chinese Optics Letters, 2023, 21(4): 041405
    Download Citation