• Photonics Research
  • Vol. 11, Issue 11, 1959 (2023)
Nannan Li1、†, Qi Zou1、†, Yizhi Lan1, Yaqi Wang1, Jun Zhang1, Michael Somekh1、2、3、4、*, Changjun Min1、5、*, Fu Feng1、2、6、*, and Xiaocong Yuan1、2、7、*
Author Affiliations
  • 1Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
  • 2Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China
  • 3Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
  • 4e-mail: michael.somekh@nottingham.ac.uk
  • 5e-mail: cjmin@szu.edu.cn
  • 6e-mail: fufeng@zhejianglab.com
  • 7e-mail: xcyuan@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.502760 Cite this Article Set citation alerts
    Nannan Li, Qi Zou, Yizhi Lan, Yaqi Wang, Jun Zhang, Michael Somekh, Changjun Min, Fu Feng, Xiaocong Yuan, "On-chip sorting of orbital angular momentum beams using Bloch surface wave structures," Photonics Res. 11, 1959 (2023) Copy Citation Text show less
    References

    [1] X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Y. Yu. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [2] N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [3] P. Miao, Z. F. Zhang, J. B. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, L. Feng. Orbital angular momentum microlaser. Science, 353, 464-467(2016).

    [4] Y. J. Shen, X. J. Wang, Z. W. Xie, C. J. Min, X. Fu, Q. Liu, M. L. Gong, X. C. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [5] T. Lei, M. Zhang, Y. R. Li, P. Jia, G. N. Liu, X. G. Xu, Z. H. Li, C. J. Min, J. Lin, C. Y. Yu, H. B. Niu, X. C. Yuan. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [6] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [7] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [8] J. P. Cheng, X. B. Sha, H. Zhang, Q. M. Chen, G. Y. Qu, Q. H. Song, S. H. Yu, S. M. Xiao. Ultracompact orbital angular momentum sorter on a CMOS chip. Nano Lett., 22, 3993-3999(2022).

    [9] S. N. Khonina, N. L. Kazanskiy, M. A. Butt, S. V. Karpeev. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron. Adv., 5, 210127(2022).

    [10] J. X. Zhang, P. X. Li, R. C. C. Cheung, A. M. H. Wong, J. Li. Generation of time-varying orbital angular momentum beams with space-time-coding digital metasurface. Adv. Photonics, 5, 036001(2023).

    [11] J. Chen, C. H. Wan, Q. W. Zhan. Engineering photonic angular momentum with structured light: a review. Adv. Photonics, 3, 064001(2021).

    [12] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [13] Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, X.-C. Yuan. Visualizing orbital angular momentum of plasmonic vortices. Opt. Lett., 37, 4627-4629(2012).

    [14] L. P. Gong, B. Gu, G. H. Rui, Y. P. Cui, Z. Q. Zhu, Q. W. Zhan. Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles. Photonics Res., 6, 138-143(2018).

    [15] A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, J. Laurat. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics, 8, 234-238(2014).

    [16] D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, G.-C. Guo. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett., 114, 050502(2015).

    [17] M. Erhard, R. Fickler, M. Krenn, A. Zeilinger. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [18] F. Q. Kong, C. M. Zhang, F. Bouchard, Z. Y. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, P. B. Corkum. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun., 8, 14970(2017).

    [19] D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, G. De Ninno. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 8, 14971(2017).

    [20] G. Musarra, K. E. Wilson, D. Faccio, E. M. Wright. Rotation-dependent nonlinear absorption of orbital angular momentum beams in ruby. Opt. Lett., 43, 3073-3075(2018).

    [21] P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, Y.-Q. Lu. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [22] S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, S. Kudryashov. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express, 25, 10214-10223(2017).

    [23] F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, T. Omatsu. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle. Sci. Rep., 6, 21738(2016).

    [24] P. S. Tan, X.-C. Yuan, G. H. Yuan, Q. Wang. High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices. Appl. Phys. Lett., 97, 241109(2010).

    [25] C. L. Zhang, C. J. Min, L. P. Du, X.-C. Yuan. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett., 108, 201601(2016).

    [26] S. B. Wei, T. Lei, L. P. Du, C. L. Zhang, H. K. Chen, Y. Yang, S. W. Zhu, X.-C. Yuan. Sub-100 nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting. Opt. Express, 23, 30143-30148(2015).

    [27] G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, D. T. Chiu. Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett., 7, 415-420(2007).

    [28] W. Brullot, M. K. Vanbel, T. Swusten, T. Verbiest. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv., 2, e1501349(2016).

    [29] Y. Zhao, A. N. Askarpour, L. Y. Sun, J. W. Shi, X. Q. Li, A. Alù. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun., 8, 14180(2017).

    [30] G. A. Swartzlander, E. L. Ford, R. S. Abdul-Malik, L. M. Close, M. A. Peters, D. M. Palacios, D. W. Wilson. Astronomical demonstration of an optical vortex coronagraph. Opt. Express, 16, 10200-10207(2008).

    [31] A. Aleksanyan, N. Kravets, E. Brasselet. Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve. Phys. Rev. Lett., 118, 203902(2017).

    [32] A. Aleksanyan, E. Brasselet. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks. Opt. Lett., 43, 383-386(2018).

    [33] Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, W. Hu, Y. Q. Lu. Fork gratings based on ferroelectric liquid crystals. Opt. Express, 24, 5822-5828(2016).

    [34] B.-Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J.-G. Wang, V. Chigrinov, Y.-Q. Lu. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590-1595(2014).

    [35] X. Y. Hu, Q. Zhao, P. P. Yu, X. L. Li, Z. Q. Wang, Y. M. Li, L. Gong. Dynamic shaping of orbital-angular-momentum beams for information encoding. Opt. Express, 26, 1796-1808(2018).

    [36] C. H. Kai, Z. K. Feng, M. I. Dedo, P. Huang, K. Guo, F. Shen, J. Gao, Z. Y. Guo. The performances of different OAM encoding systems. Opt. Commun., 430, 151-157(2018).

    [37] E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, E. Santamato. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett., 94, 231124(2009).

    [38] W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. J. Zhang, T.-H. Lin, V. Chigrinov, Y.-Q. Lu. Meta-q-plate for complex beam shaping. Sci. Rep., 6, 25528(2016).

    [39] S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, E. Santamato. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express, 19, 4085-4090(2011).

    [40] W. H. Zhang, Q. Q. Qi, J. Zhou, L. X. Chen. Mimicking Faraday rotation to sort the orbital angular momentum of light. Phys. Rev. Lett., 112, 153601(2014).

    [41] G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, M. J. Padgett. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [42] M. Mirhosseini, M. Malik, Z. M. Shi, R. W. Boyd. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 4, 2781(2013).

    [43] Y. H. Wen, I. Chremmos, Y. J. Chen, J. B. Zhu, Y. F. Zhang, S. Y. Yu. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 120, 193904(2018).

    [44] A. Overvig, A. Alù. Wavefront-selective Fano resonant metasurfaces. Adv. Photonics, 3, 026002(2021).

    [45] J. Yao, R. Lin, M. K. Chen, D. P. Tsai. Integrated-resonant metadevices: a review. Adv. Photonics, 5, 024001(2023).

    [46] S. T. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. J. Xu, M. H. Hong, D. H. Zhang, J. H. Teng, A. Danner, C.-W. Qiu. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale, 8, 2227-2233(2016).

    [47] J. Chen, X. Chen, T. Li, S. N. Zhu. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev., 12, 1700331(2018).

    [48] F. Feng, G. Y. Si, C. J. Min, X. C. Yuan, M. Somekh. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl., 9, 95(2020).

    [49] X. S. Zhao, X. Feng, F. Liu, K. Y. Cui, W. Zhang, Y. D. Huang. A compound phase-modulated beam splitter to distinguish both spin and orbital angular momentum. ACS Photonics, 7, 212-220(2020).

    [50] F. Feng, S.-B. Wei, L. Li, C.-J. Min, X.-C. Yuan, M. Somekh. Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave. Opt. Express, 27, 27536-27545(2019).

    [51] W. J. Kong, Z. Zheng, Y. H. Wan, S. N. Li, J. S. Liu. High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sens. Actuators B Chem., 193, 467-471(2014).

    [52] M. U. Khan, B. Corbett. Bloch surface wave structures for high sensitivity detection and compact waveguiding. Sci. Technol. Adv. Mater., 17, 398-409(2016).

    [53] A. L. Lereu, M. Zerrad, A. Passian, C. Amra. Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors. Appl. Phys. Lett., 111, 011107(2017).

    [54] Y. Kuai, Z. B. Xie, J. X. Chen, H. Q. Gui, L. Xu, C. F. Kuang, P. Wang, X. Liu, J. G. Liu, J. R. Lakowicz, D. G. Zhang. Real-time measurement of the hygroscopic growth dynamics of single aerosol nanoparticles with Bloch surface wave microscopy. ACS Nano, 14, 9136-9144(2020).

    [55] Y. Kuai, J. X. Chen, Z. T. Fan, G. Zou, J. R. Lakowicz, D. G. Zhang. Planar photonic chips with tailored angular transmission for high-contrast-imaging devices. Nat. Commun., 12, 6835(2021).

    [56] Y. F. Xiang, X. Tang, Y. N. Fu, F. Y. Lu, Y. Kuai, C. J. Min, J. X. Chen, P. Wang, J. R. Lakowicz, X. C. Yuan, D. G. Zhang. Trapping metallic particles using focused Bloch surface waves. Nanoscale, 12, 1688-1696(2020).

    [57] R. X. Wang, Y. Wang, D. G. Zhang, G. Y. Si, L. F. Zhu, L. P. Du, S. S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. C. Yuan, J. R. Lakowicz. Diffraction-free Bloch surface waves. ACS Nano, 11, 5383-5390(2017).

    [58] D. G. Zhang, R. X. Wang, Y. F. Xiang, Y. Kuai, C. F. Kuang, R. Badugu, Y. K. Xu, P. Wang, H. Ming, X. Liu, J. R. Lakowicz. Silver nanowires for reconfigurable Bloch surface waves. ACS Nano, 11, 10446-10451(2017).

    [59] D. G. Zhang, Y. F. Xiang, J. X. Chen, J. J. Cheng, L. F. Zhu, R. X. Wang, G. Zou, P. Wang, H. Ming, M. Rosenfeld, R. Badugu, J. R. Lakowicz. Extending the propagation distance of a silver nanowire plasmonic waveguide with a dielectric multilayer substrate. Nano Lett., 18, 1152-1158(2018).

    [60] J. Lin, J. P. B. Mueller, Q. Wang, G. H. Yuan, N. Antoniou, X.-C. Yuan, F. Capasso. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [61] L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, C. J. Kong. Welding with high power fiber lasers a preliminary study. Mater. Des., 28, 1231-1237(2007).

    [62] L. Novotny. Effective wavelength scaling for optical antennas. Phys. Rev. Lett., 98, 266802(2007).

    [63] R.-H. Jiang, C. Chen, D.-Z. Lin, H.-C. Chou, J.-Y. Chu, T.-J. Yen. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio. Nano Lett., 18, 881-885(2018).

    [64] Y. Z. Sun, X. H. Yan, S. Blaize, R. Bachelot, H. Wei, W. Ding. Phase-resolved all-fiber reflection-based s-NSOM for on-chip characterization. Opt. Express, 30, 41118-41132(2022).

    [65] P. Shi, A. P. Yang, F. F. Meng, J. S. Chen, Y. Q. Zhang, Z. W. Xie, L. P. Du, X. C. Yuan. Optical near-field measurement for spin-orbit interaction of light. Prog. Quantum Electron., 78, 100341(2021).

    [66] A. L. Lereu, A. Passian, P. Dumas. Near field optical microscopy: a brief review. Int. J. Nanotechnol., 9, 488-501(2012).

    [67] B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, D. W. Pohl. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys., 112, 7761-7774(2000).

    [68] J. R. Zhang, Z. Y. Guo, K. Y. Zhou, L. L. Ran, L. Zhu, W. Wang, Y. X. Sun, F. Shen, J. Gao, S. T. Liu. Circular polarization analyzer based on an Archimedean nano-pinholes array. Opt. Express, 23, 30523-30531(2015).

    [69] Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, S. Y. Teng. A universal plasmonic polarization state analyzer. Plasmonics, 13, 1129-1134(2018).

    Nannan Li, Qi Zou, Yizhi Lan, Yaqi Wang, Jun Zhang, Michael Somekh, Changjun Min, Fu Feng, Xiaocong Yuan, "On-chip sorting of orbital angular momentum beams using Bloch surface wave structures," Photonics Res. 11, 1959 (2023)
    Download Citation