• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 6, 1935 (2024)
WANG Mengli1, SANG Xiujie1, ZHOU Jing1, LI Fang1, and LI Min2,*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20230726 Cite this Article
    WANG Mengli, SANG Xiujie, ZHOU Jing, LI Fang, LI Min. Effect of Calcination Temperature on Strain Properties of Potassium Sodium Niobate Based Ferroelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1935 Copy Citation Text show less
    References

    [1] KIM E J, LEE T G, KIM D S, et al. Textured Pb(Zr,Ti)O3- Pb[(Zn,Ni)1/3Nb2/3]O3 multilayer ceramics and their application to piezoelectric actuators[J]. Appl Mater Today, 2020, 20: 100695.

    [2] LV X, WU J G, ZHANG X X. A new concept to enhance piezoelectricity and temperature stability in KNN ceramics[J]. Chem Eng J, 2020, 402: 126215.

    [3] KONG Z, BAI W, ZHENG P, et al. Enhanced electromechanical properties of CaZrO3-modified (K0.5Na0.5)NbO3-based lead-free ceramics[J]. Ceram Inter, 2017, 43(9): 7237-7242.

    [4] ZHENG T, WU J G, XIAO D Q, et al. Potassium-sodium niobate lead-free ceramics: Modified strain as well as piezoelectricity[J]. J Mater Chem A, 2015, 3(5): 1868-1874.

    [5] WANG X, WU J, XIAO D, et al. Giant piezoelectricity in potassium- sodium niobate lead-free ceramics[J]. J Am Chem Soc, 2014, 136(7): 2905-2910.

    [6] FU J. Study of the composition-structure-property relationship in alkaline niobate based lead-free piezoelectric ceramics[D]. Hefei: Hefei University of Technology, 2013.

    [7] WU W J, CHEN M, BO W, et al. Modulation of electrical properties of KNNS-BNKZ lead-free ceramics by calcination temperatures[J]. J Mater Sci: Mater Electron, 2017, 28(2): 2086-2092.

    [8] SUN X, ZHAO C, LV X, et al. Decoding the role of diffused multiphase coexistence in potassium sodium niobate-based ceramics with nanodomains for enhanced piezoelectric devices[J]. Acs Appl Nano Mater, 2020, 3(2): 953-961.

    [9] DAI Y J, ZHANG X W, CHEN K P. Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics[J]. Appl Phys Lett, 2009, 94(4): 042905.

    [10] KOSEC M, BOBNAR V, HROVAT M, et al. New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution[J]. J Mater Res, 2004, 19(6): 1849-1854.

    [11] LIU Z Y, FAN H Q, LONG C B. Dielectric nonlinearity and electrical properties of K0.5Na0.5NbO3-SrTiO3 relaxor ferroelectrics[J]. J Mater Sci, 2014, 49(23): 8107-8115.

    [12] ZHANG N, ZHAO C, WU J. Potassium sodium niobate ceramics with broad phase transition range: Temperature-insensitive strain[J]. Ceram Inter, 2019, 45(18): 24827-24834.

    [13] JIN L, LI F, ZHANG S J. Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures[J]. J Am Ceram Soc, 2014, 97(1): 1-27.

    [14] CAO W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials[J]. J Phys Chem Solids, 1996, 57(10): 1499-1505.

    [15] WU J, XIAO D, ZHU J. Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries[J]. Chem Rev, 2015, 115(7): 2559-2595.

    [16] HUANGFU G, ZENG K, WANG B Q, et al. Giant electric field-induced strain in lead-free piezoceramics[J]. Science, 2022, 378(6624): 1125-1130.

    [17] LIU X M, TAN X L. Giant strains in non-textured (Bi1/2Na1/2)TiO3- based lead-free ceramics[J]. Adv Mater, 2016, 28(3): 574-578.

    WANG Mengli, SANG Xiujie, ZHOU Jing, LI Fang, LI Min. Effect of Calcination Temperature on Strain Properties of Potassium Sodium Niobate Based Ferroelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1935
    Download Citation