• High Power Laser Science and Engineering
  • Vol. 7, Issue 4, 04000e66 (2019)
Xinkun Chu1, Hao Zhang1, Zhiyu Tian1, Qing Zhang1..., Fang Wang2, Jing Chen2 and Yuanchao Geng2,†|Show fewer author(s)
Author Affiliations
  • 1Institute of Computer Application, China Academy of Engineering Physics, Mianyang621900, China
  • 2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang621900, China
  • show less
    DOI: 10.1017/hpl.2019.52 Cite this Article Set citation alerts
    Xinkun Chu, Hao Zhang, Zhiyu Tian, Qing Zhang, Fang Wang, Jing Chen, Yuanchao Geng, "Detection of laser-induced optical defects based on image segmentation," High Power Laser Sci. Eng. 7, 04000e66 (2019) Copy Citation Text show less

    Abstract

    A number of vision-based methods for detecting laser-induced defects on optical components have been implemented to replace the time-consuming manual inspection. While deep-learning-based methods have achieved state-of-the-art performances in many visual recognition tasks, their success often hinges on the availability of a large number of labeled training sets. In this paper, we propose a surface defect detection method based on image segmentation with a U-shaped convolutional network (U-Net). The designed network was trained on paired sets of online and offline images of optics from a large laser facility. We show in our experimental evaluation that our approach can accurately locate laser-induced defects on the optics in real time. The main advantage of the proposed method is that the network can be trained end to end on small samples, without the requirement for manual labeling or manual feature extraction. The approach can be applied to the daily inspection and maintenance of optical components in large laser facilities.
    DCE=2pgp+g,(1)

    View in Article

    P=TP/(TP+FP),(2)

    View in Article

    R=TP/(TP+FN),(3)

    View in Article

    F1=2PR/(P+R),(4)

    View in Article

    Xinkun Chu, Hao Zhang, Zhiyu Tian, Qing Zhang, Fang Wang, Jing Chen, Yuanchao Geng, "Detection of laser-induced optical defects based on image segmentation," High Power Laser Sci. Eng. 7, 04000e66 (2019)
    Download Citation