• High Power Laser and Particle Beams
  • Vol. 33, Issue 6, 065011 (2021)
Yuanyuan Jiang, Yanhui Wang, Caihui Gao, and Dezhen Wang
Author Affiliations
  • Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.11884/HPLPB202133.210148 Cite this Article
    Yuanyuan Jiang, Yanhui Wang, Caihui Gao, Dezhen Wang. Numerical study of atmospheric pressure Ar plasma jets under different electrode structures[J]. High Power Laser and Particle Beams, 2021, 33(6): 065011 Copy Citation Text show less
    References

    [1] Belmonte T, Pintassilgo C D, Czerwiec T, et al. Oxygen plasma surface interaction in treatments of polyolefines[J]. Surface and Coatings Technology, 200, 26-30(2005).

    [2] Baik K Y, Kang H L, Kim J, et al. Non-thermal plasma jet without electrical shock for biomedical applications[J]. Applied Physics Letters, 103, 164101(2013).

    [3] Kim K, Ahn H J, Lee J H, et al. Cellular membrane collapse by atmospheric-pressure plasma jet[J]. Applied Physics Letters, 104, 013701(2014).

    [4] Naidis G V. Modelling of streamer propagation in atmospheric-pressure helium plasma jets[J]. Journal of Physics D: Applied Physics, 43, 402001(2010).

    [5] Yan Wen, Economou D J. Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250–760 Torr) and interacting with a substrate[J]. Journal of Applied Physics, 120, 123304(2016).

    [6] Lu Xinpei, Naidis G V, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J]. Physics Reports, 630, 1-84(2016).

    [8] Zhang Bo, Zhu Ying, Liu Feng, et al. The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 19, 064001(2017).

    [9] Yue Yuanfu, Pei Xuekai, Lu Xinpei. Comparison on the absolute concentrations of hydroxyl and atomic oxygen generated by five different nonequilibrium atmospheric-pressure plasma jets[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 1, 541-549(2017).

    [10] Xiong Zhongmin, Kushner M J. Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target[J]. Plasma Sources Science and Technology, 21, 034001(2012).

    [11] Maletić D, Puač N, Selaković N, et al. Time-resolved optical emission imaging of an atmospheric plasma jet for different electrode positions with a constant electrode gap[J]. Plasma Sources Science and Technology, 24, 025006(2015).

    [12] Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets[J]. Applied Physics Letters, 93, 111501(2008).

    [13] Yan Wen, Liu Fucheng, Sang Chaofeng, et al. Two-dimensional numerical study of an atmospheric pressure helium plasma jet with dual-power electrode[J]. Chinese Physics B, 24, 065203(2015).

    [14] Judée F, Merbahi N, Wattieaux G, et al. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure[J]. Journal of Applied Physics, 120, 114901(2016).

    [15] Van Gaens W, Bruggeman P J, Bogaerts A. Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet[J]. New Journal of Physics, 16, 063054(2014).

    [16] Xu Han, Chen Chen, Liu Dingxin, et al. Contrasting characteristics of aqueous reactive species induced by cross-field and linear-field plasma jets[J]. Journal of Physics D: Applied Physics, 50, 245201(2017).

    [17] Van Gaens W V, Bogaerts A. Corrigendum: kinetic modelling for an atmospheric pressure argon plasma jet in humid air (2013 J. Phys. D: Appl. Phys. 46 275201)[J]. Journal of Physics D: Applied Physics, 47, 079502(2014).

    [18] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficientsand rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 14, 722-733(2005).

    [19] https:us.lxcat.datasetdataset_type.php

    [20] Ellis H W, Pai R Y, McDaniel E W, et al. Transport properties of gaseous ions over a wide energy range[J]. Atomic Data and Nuclear Data Tables, 17, 177-210(1976).

    [21] Breden D, Miki K, Raja L L. Computational study of cold atmospheric nanosecond pulsed helium plasma jet in air[J]. Applied Physics Letters, 99, 111501(2011).

    [22] Breden D, Raja L L. Computational study of the interaction of cold atmospheric helium plasma jets with surfaces[J]. Plasma Sources Science and Technology, 23, 065020(2014).

    [23] Wang Lijun, Zheng Yashuang, Jia Shenli. Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material[J]. Physics of Plasmas, 23, 103504(2016).

    [24] Yan Wen, Economou D J. Gas flow rate dependence of the discharge characteristics of a helium atmospheric pressure plasma jet interacting with a substrate[J]. Journal of Physics D: Applied Physics, 50, 415205(2017).

    [25] Jánský J, Le Delliou P, Tholin F, et al. Experimental and numerical study of the propagation of a discharge in a capillary tube in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 44, 335201(2011).

    CLP Journals

    [1] Bide Zhang, Wanshun Li, Bingchuan Wang. Numerical study of atmospheric pressure He plasma jets with dual-channel inlet under different electrode structures[J]. High Power Laser and Particle Beams, 2022, 34(8): 085003

    Yuanyuan Jiang, Yanhui Wang, Caihui Gao, Dezhen Wang. Numerical study of atmospheric pressure Ar plasma jets under different electrode structures[J]. High Power Laser and Particle Beams, 2021, 33(6): 065011
    Download Citation