• Photonics Research
  • Vol. 6, Issue 9, 900 (2018)
Hongyu Luo1、†, Xiangling Tian2、†, Ying Gao1, Rongfei Wei3, Jianfeng Li1、5、*, Jianrong Qiu2、4、6、*, and Yong Liu1
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
  • 2State Key Laboratory of Luminescent Materials and Devices and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
  • 3Department of Physics, Zhejiang Normal University, Jinhua 321004, China
  • 4State Key Laboratory of Modern Optical Instrumentation, College of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 5e-mail: lijianfeng@uestc.edu.cn
  • 6e-mail: qjr@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000900 Cite this Article Set citation alerts
    Hongyu Luo, Xiangling Tian, Ying Gao, Rongfei Wei, Jianfeng Li, Jianrong Qiu, Yong Liu. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region[J]. Photonics Research, 2018, 6(9): 900 Copy Citation Text show less
    References

    [1] T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, R. Utano. Tunable 7-12-μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP2 crystals. Opt. Lett., 22, 597-599(1997).

    [2] M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, R. Vallée. 3.77  μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Opt. Lett., 39, 2052-2055(2014).

    [3] J. Gauthier, V. Fortin, J. Carrée, S. Poulain, M. Poulain, R. Vallée, M. Bernier. Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber. Opt. Lett., 41, 1756-1759(2016).

    [4] S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, R. Vallée. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm. Opt. Lett., 41, 5294-5297(2016).

    [5] R. Kaufmann, R. Hisbst. Pulsed 2.94  μm erbium–YAG laser skin ablation—experimental results and first clinical application. Clin. Exp. Dermatol., 15, 389-393(1990).

    [6] J. T. Walsh, T. F. Deutsch. Er:YAG laser ablation of tissue: measurement of ablation rates. Lasers Surg. Med., 9, 208-211(1989).

    [7] R. Kaufmann, A. Hartmann, R. Hibst. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery. J. Dermatol. Surg. Oncol., 20, 112-118(1994).

    [8] R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, A. Koss. Er:YAG laser system for cleaning of painted surfaces. Conference on Lasers and Electro-Optics Europe, 676(2006).

    [9] J. F. Li, D. D. Hudson, Y. Liu, S. D. Jackson. Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror. Opt. Lett., 37, 3747-3749(2012).

    [10] S. Antipov, D. D. Hudson, A. Fuerbach, S. D. Jackson. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373-1376(2016).

    [11] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe. 12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm. Opt. Lett., 36, 2812-2814(2011).

    [12] A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga. Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. Opt. Express, 12, 5125-5130(2014).

    [13] M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich. Mid-infrared Q-switched Er:YAG laser for medical applications. Laser Phys. Lett., 7, 498-504(2010).

    [14] J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, S. K. Turistyn. Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser. Laser Phys. Lett., 11, 065102(2014).

    [15] H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, Y. Liu. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system. Opt. Express, 24, 29022-29032(2016).

    [16] T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, S. H. Zhou. Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror. Opt. Eng., 55, 086106(2016).

    [17] C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, Y. Liu. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength. IEEE Photon. Technol. Lett., 29, 881-884(2017).

    [18] S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, S. H. Zhou. Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser. Opt. Mater. Express, 8, 865-874(2018).

    [19] C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, N. Peyghambarian. Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser. Opt. Lett., 38, 3233-3235(2013).

    [20] J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, Y. Liu. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber. Opt. Lett., 40, 3659-3662(2015).

    [21] C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, Y. Liu. Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett., 13, 105108(2016).

    [22] P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, C. J. Zhao. Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser. Chin. Opt. Lett., 16, 020012(2018).

    [23] Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, L. J. Qian. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm. Opt. Express, 23, 24713-24718(2015).

    [24] J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, Y. Liu. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 6, 30361(2016).

    [25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [26] Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as saturable absorber for ultrafast pulsed laser. Adv. Funct. Mater., 19, 3077-3083(2009).

    [27] V. Tran, R. Soklaski, Y. Liang, L. Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319(2014).

    [28] Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, H. Zhang. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater., 4, 045010(2017).

    [29] G. Wang, R. Pandey, S. P. Kama. Atomically thin group V elemental films: theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces, 7, 11490-11496(2015).

    [30] S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem., 128, 1698-1701(2016).

    [31] S. K. Gupta, Y. Sonvane, G. X. Wang, P. Ravindra. Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes. Chem. Phys. Lett., 641, 169-172(2015).

    [32] S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., 127, 3155-3158(2015).

    [33] M. Zhao, X. Zhang, L. Li. Strain-driven band inversion and topological aspects in antimonene. Sci. Rep., 5, 16108(2015).

    [34] Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, H. Y. Zhu. First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes. Ann. Phys., 529, 1600152(2017).

    [35] M. X. Wang, F. Zhang, Z. P. Wang, Z. X. Wu, X. G. Xu. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber. Opt. Express, 26, 4085-4095(2018).

    [36] J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, H. B. Zeng. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun., 7, 13352(2016).

    [37] J. Zhang, D. H. Li, R. J. Chen, Q. H. Xiong. Laser cooling of a semiconductor by 40 kelvin. Nature, 493, 504-508(2013).

    [38] D. H. Li, J. Zhang, Q. H. Xiong. Laser cooling of CdS nanobelts: thickness matters. Opt. Express, 21, 19302-19310(2013).

    [39] L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, H. Zhang. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability. Adv. Opt. Mater., 5, 1700301(2017).

    [40] C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, S. N. Zhu. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    [41] B. Braun, F. X. Kärtner, G. Zhang, M. Moser, U. Keller. 56-ps passively Q-switched diode-pumped microchip laser. Opt. Lett., 22, 381-383(1997).

    [42] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B, 16, 46-56(1999).

    CLP Journals

    [1] Chen Wei, Liqiang Zhou, Dongsheng Wang, Hao Chi, Hua Huang, Han Zhang, Yong Liu. MXene-Ti3C2Tx for watt-level high-efficiency pulse generation in a 2.8 μm mid-infrared fiber laser[J]. Photonics Research, 2020, 8(6): 972

    [2] Hongyu Luo, Jian Yang, Jianfeng Li, Yong Liu. Widely tunable passively Q-switched Er3+-doped ZrF4 fiber laser in the range of 3.4–3.7 μm based on a Fe2+:ZnSe crystal[J]. Photonics Research, 2019, 7(9): 1106

    [3] Zhenhong Wang, Bin Zhang, Bing Hu, Zhongjun Li, Chunyang Ma, Yu Chen, Yufeng Song, Han Zhang, Jun Liu, Guohui Nie. Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics[J]. Photonics Research, 2020, 8(11): 1687

    Hongyu Luo, Xiangling Tian, Ying Gao, Rongfei Wei, Jianfeng Li, Jianrong Qiu, Yong Liu. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region[J]. Photonics Research, 2018, 6(9): 900
    Download Citation