• Chinese Journal of Lasers
  • Vol. 47, Issue 1, 0110001 (2020)
Yufang Chen, Hongdan Wan*, Qian Chen, Quan Zhou, and Zuxing Zhang
Author Affiliations
  • College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
  • show less
    DOI: 10.3788/CJL202047.0110001 Cite this Article Set citation alerts
    Yufang Chen, Hongdan Wan, Qian Chen, Quan Zhou, Zuxing Zhang. High Sensitivity Optical Fiber Temperature Sensor Based on Rare-Earth-Doped Double-Fiber Peanut[J]. Chinese Journal of Lasers, 2020, 47(1): 0110001 Copy Citation Text show less

    Abstract

    We proposed and demonstrated an optical fiber temperature sensor based on rare-earth-doped double-fiber peanut (RDDFP). We used fibers doped with rare-earth elements to fabricate a peanut-shaped structure that can realize high temperature sensitivity. The sensitivity of temperature to the cladding mode and core mode interference are used and the strong optothermal effect of rare-earth element ions is combined in the proposed structure. We have theoretically and experimentally investigated and compared the mode interference and thermosensitive effect of the erbium-doped double-fiber peanut (EDDFP) and ytterbium-doped double-fiber peanut (YDDFP). Experimental results show that comparing with a single-mode fiber peanut, RDDFP exhibits higher temperature sensitivity because of its stronger optothermal effect. The temperature sensitivity of EDDFP and YDDFP are 1286 pm/℃ and -2343 pm/℃, respectively. The optical fiber temperature sensor based on RDDFP has the advantages of high sensitivity, high repeatability, all fiber, simple fabrication, compact structure, and so on. It has good application prospects in the fields of power systems, architecture, aerospace, and ocean development.
    Yufang Chen, Hongdan Wan, Qian Chen, Quan Zhou, Zuxing Zhang. High Sensitivity Optical Fiber Temperature Sensor Based on Rare-Earth-Doped Double-Fiber Peanut[J]. Chinese Journal of Lasers, 2020, 47(1): 0110001
    Download Citation