[1] M. Samizadeh Nikoo, E. Matioli, Electronic metadevices for terahertz applications. Nature 614, 451–455 (2023).
[2] V. Pistore, H. Nong, P.-B. Vigneron, K. Garrasi, S. Houver et al., Millimeter wave photonics with terahertz semiconductor lasers. 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Chengdu, China. IEEE, (2021), pp1.
[3] L. Luo, I. Chatzakis, J. Wang, F.B.P. Niesler, M. Wegener et al., Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014).
[4] D. Suzuki, S. Oda, Y. Kawano, A flexible and wearable terahertz scanner. Nat. Photonics 10, 809–813 (2016).
[5] Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022).
[6] Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022).
[7] B. Shi, P. Wang, J. Feng, C. Xue, G. Yang et al., Split-ring structured all-inorganic perovskite photodetector arrays for masterly Internet of Things. Nano-Micro Lett. 15, 3 (2022).
[8] M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter et al., Terahertz quantum sensing. Sci. Adv. 6, eaaz8065 (2020).
[9] M. Manjappa, A. Solanki, A. Kumar, T.C. Sum, R. Singh, Solution-processed lead iodide for ultrafast all-optical switching of terahertz photonic devices. Adv. Mater. 31, e1901455 (2019).
[10] A.G. Markelz, D.M. Mittleman, Perspective on terahertz applications in bioscience and biotechnology. ACS Photonics 9, 1117–1126 (2022).
[11] M. Chen, Y. Wang, Z. Zhao, Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity. ACS Nano 16, 17263–17273 (2022).
[12] Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, D.M. Mittleman, Single-shot link discovery for terahertz wireless networks. Nat. Commun. 11, 2017 (2020).
[13] R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021).
[14] R.B. Schulz, V.C. Plantz, D.R. Brush, Shielding theory and practice. IEEE Trans. Electromagn. Compat. 30, 187–201 (1988).
[15] N. van Hoof, M. Parente, A. Baldi, J.G. Rivas, Terahertz time-domain spectroscopy and near-field microscopy of transparent silver nanowire networks. Adv. Opt. Mater. 8, 1900790 (2020).
[16] S. Hou, W. Ma, G. Li, Y. Zhang, Y. Ji et al., Excellent Terahertz shielding performance of ultrathin flexible Cu/graphene nanolayered composites with high stability. J. Mater. Sci. Technol. 52, 136–144 (2020).
[17] B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023).
[18] H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020).
[19] J. Bang, J. Ahn, J. Zhang, T.H. Ko, B. Park et al., Stretchable and directly patternable double-layer structure electrodes with complete coverage. ACS Nano 16, 12134–12144 (2022).
[20] S. Park, J. Bang, B.-S. Kim, S.J. Oh, J.-H. Choi, Metallic fusion of nanocrystal thin films for flexible and high-performance electromagnetic interference shielding materials. Mater. Today Adv. 12, 100177 (2021).
[21] Y.I. Jhon, J.H. Lee, Y.M. Jhon, Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: density functional theory study. Mater. Today Commun. 32, 103917 (2022).
[22] L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022).
[23] J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16, 6700–6711 (2022).
[24] Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465–1474 (2021).
[25] H. Wan, N. Liu, J. Tang, Q. Wen, X. Xiao, Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 15, 13646–13652 (2021).
[26] T. Zhao, P. Xie, H. Wan, T. Ding, M. Liu et al., Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17, 622–628 (2023).
[27] V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau et al., Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Phys. Rev. B 89, 235428 (2014).
[28] Q. Zou, W. Guo, L. Zhang, L. Yang, Z. Zhao et al., MXene-based ultra-thin film for terahertz radiation shielding. Nanotechnology 31, 505710 (2020).
[29] A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020).
[30] T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020).
[31] J.T. Hong, D.J. Park, J.Y. Moon, S.B. Choi, J.K. Park et al., Terahertz wave applications of single-walled carbon nanotube films with high shielding effectiveness. Appl. Phys. Express 5, 015102 (2012).
[32] G. Li, N. Amer, H.A. Hafez, S. Huang, D. Turchinovich et al., Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. Nano Lett. 20, 636–643 (2020).
[33] G. Choi, F. Shahzad, Y.-M. Bahk, Y.M. Jhon, H. Park et al., Enhanced terahertz shielding of MXenes with nano-metamaterials. Adv. Opt. Mater. 6, 1701076 (2018).
[34] B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2023).
[35] Y. Du, Z. Yan, W. You, Q. Men, G. Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023).
[36] B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023).
[37] J. Li, H. Sun, S.-Q. Yi, K.-K. Zou, D. Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2022).
[38] Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019).
[39] R. Yang, H. Song, Z. Zhou, S. Yang, X. Tang et al., Ultra-sensitive, multi-directional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces 15, 8345–8354 (2023).
[40] S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570–23579 (2022).
[41] A. Javili, A.D. Bakiler, A displacement-based approach to geometric instabilities of a film on a substrate. Math. Mech. Solids 24, 2999–3023 (2019).
[42] B. Zhao, C.B. Park, Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C 5, 6954–6961 (2017).
[43] Z. Huang, H. Chen, S. Xu, L.Y. Chen, Y. Huang et al., Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Opt. Mater. 6, 1801165 (2018).
[44] A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 369, 446–450 (2020).
[45] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).
[46] S. Venkatachalam, D. Bertin, G. Ducournau, J.F. Lampin, D. Hourlier, Kapton-derived carbon as efficient terahertz absorbers. Carbon 100, 158–164 (2016).
[47] J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609–44616 (2017).
[48] Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14, 2109–2117 (2020).
[49] C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021).
[50] J.H. Yim, M.A. Seo, Y.H. Ahn, F. Rotermund, D.S. Kim et al., Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films. 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves. Pasadena, CA, USA. IEEE, (2008), pp1.
[51] A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori et al., 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).
[52] M.M. Hasan, M.M. Hossain, H.K. Chowdhury, Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A 9, 3231–3269 (2021).
[53] X. Guo, N. Li, C. Wu, X. Dai, R. Qi et al., Studying plasmon dispersion of MXene for enhanced electromagnetic absorption. Adv. Mater. 34, e2201120 (2022).