• Acta Photonica Sinica
  • Vol. 50, Issue 8, 0850202 (2021)
Ye TIAN1、2, Chuliang ZHOU1、2, Xuewen FU3、*, Shaozheng JI3, Yuxin LENG1、2, and Ruxin LI1、2
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai20800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
  • 3Ultrafast Electron Microscopy Laboratory, the MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin00071, China
  • show less
    DOI: 10.3788/gzxb20215008.0850202 Cite this Article
    Ye TIAN, Chuliang ZHOU, Xuewen FU, Shaozheng JI, Yuxin LENG, Ruxin LI. Research Progress of Generation and Control of Ultrafast and Coherent Electron Sources Based on Optical Fields (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850202 Copy Citation Text show less
    References

    [1] K E ECHTERNKAMP, A FEIST, S SCHAFER et al. Ramsey-type phase control of free-electron beams. Nature Physics, 12, 1000-1004(2016).

    [2] R J D MILLER. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science, 343, 1108-1116(2014).

    [3] A H ZEWAIL. Four-dimensional electron microscopy. Science, 328, 187-193(2010).

    [4] T FRIGGE, B HAFKE, T WITTE et al. Optically excited structural transition in atomic wires on surfaces at the quantum limit. Nature, 544, 207-211(2017).

    [5] L KASMI, D KREIER, M BRADLER et al. Femtosecond single-electron pulses generated by two-photon photoemission close to the work function. New Journal of Physics, 17(2015).

    [6] R BORMANN, S STRAUCH, S SCHÄFER et al. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode. Journal of Applied Physics, 118(2015).

    [7] J HOFFROGGE, J P STEIN, M KRUEGER et al. Tip-based source of femtosecond electron pulses at 30 keV. Journal of Applied Physics, 115(2014).

    [8] R P CHATELAIN, V R MORRISON, B L M KLARENAAR et al. Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction. Physical Review Letters, 113(2014).

    [9] A GLISERIN, M WALBRAN, F KRAUSZ et al. Sub-phonon-period compression of electron pulses for atomic diffraction. Nature Communications, 6, 8723(2015).

    [10] J MAXSON, D CESAR, G CALMASINI et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Physical Review Letters, 118, 154802(2017).

    [11] OUDHEUSDEN TVAN, P PASMANS, DER GEER S BVAN et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Physical Review Letters, 105, 264801(2010).

    [12] C KEALHOFER, W SCHNEIDER, D EHBERGER et al. All-optical control and metrology of electron pulses. Science, 352, 429-433(2016).

    [13] C M S SEARS, E COLBY, R ISCHEBECK et al. Production and characterization of attosecond electron bunch trains. Physical Review Special Topics-Accelerators and Beams, 11(2008).

    [14] M KOZAK, T ECKSTEIN, N SCHONENBERGER et al. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nature Physics, 14, 121-125(2018).

    [15] P BAUM, A H ZEWAIL. Attosecond electron pulses for 4D diffraction and microscopy. Proceedings of the National Academy of Sciences of the United States of America, 104, 18409-18414(2007).

    [16] Y MORIMOTO, P BAUM. Diffraction and microscopy with attosecond electron pulse trains. Nature Physics, 14, 252-256(2018).

    [17] M KOZAK, J MCNEUR, K J LEEDLE et al. Optical gating and streaking of free electrons with sub-optical cycle precision. Nature Communications, 8, 14342(2017).

    [18] K E PRIEBE, C RATHJE, S V YALUNIN et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nature Photonics, 11, 793-797(2017).

    [19] T PLETTNER, R L BYER, E COLBY et al. Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum. Physical Review Letters, 95, 134801(2005).

    [20] B M COWAN. Two-dimensional photonic crystal accelerator structures. Physical Review Special Topics-Accelerators and Beams, 6, 101301(2003).

    [21] L SCHäCHTER, R L BYER, R H SIEMANN. Wake field in dielectric acceleration structures. Physical Review E, 68(2003).

    [22] E A PERALTA, K SOONG, R J ENGLAND et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature, 503, 91-94(2013).

    [23] A M MICHALIK, J E SIPE. Evolution of non-gaussian electron bunches in ultrafast electron diffraction experiments: comparison to analytic model. Journal of Applied Physics, 105(2009).

    [24] T V OUDHEUSDEN, E F D JONG, S B V D GEER et al. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. Journal of Applied Physics, 102(2007).

    [25] J C WILLIAMSON, J CAO, H IHEE et al. Clocking transient chemical changes by ultrafast electron diffraction. Nature, 386, 159-162(1997).

    [26] H IHEE, V A LOBASTOV, U M GOMEZ et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science, 291, 458-462(2001).

    [27] J CAO, Z HAO, H PARK et al. Femtosecond electron diffraction for direct measurement of ultrafast atomic motions. Applied Physics Letters, 83, 1044-1046(2003).

    [28] B J SIWICK, J R DWYER, R E JORDAN et al. An atomic-level view of melting using femtosecond electron diffraction. Science, 302, 1382-1385(2003).

    [29] L WALDECKER, R BERTONI, R ERNSTORFER. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit. Journal of Applied Physics, 117(2015).

    [30] S CARBAJO, E A NANNI, L J WONG et al. Direct longitudinal laser acceleration of electrons in free space. Physical Review Accelerators and Beams, 19(2016).

    [31] P ZHU, Y ZHU, Y HIDAKA et al. Femtosecond time-resolved Mev electron diffraction. New Journal of Physics, 17(2015).

    [32] P F ZHU, F C FU, S G LIU et al. Time-resolved visualization of laser-induced heating of gold with mev ultrafast electron diffraction. Chinese Physics Letters, 31, 116101(2014).

    [33] S P WEATHERSBY, G BROWN, M CENTURION et al. Mega-electron-volt ultrafast electron diffraction at slac national accelerator laboratory. Review of Scientific Instruments, 86(2015).

    [34] R LI, W HUANG, Y DU et al. Note: Single-shot continuously time-resolved MeV ultrafast electron diffraction. Review of Scientific Instruments, 81(2010).

    [35] J YANG, K KAN, N NARUSE et al. 100-femtosecond MeV electron source for ultrafast electron diffraction. Radiation Physics and Chemistry, 78, 1106-1111(2009).

    [36] J B HASTINGS, F M RUDAKOV, D H DOWELL et al. Ultrafast time-resolved electron diffraction with megavolt electron beams. Applied Physics Letters, 89, 184109(2006).

    [37] E FILL, L VEISZ, A APOLONSKI et al. Sub-fs electron pulses for ultrafast electron diffraction. New Journal of Physics, 8, 272(2006).

    [38] X J WANG, D XIANG, T K KIM et al. Potential of femtosecond electron diffraction using near-relativistic electrons from a photocathode RF electron gun. Journal of the Korean Physical Society, 48, 390-396(2006).

    [39] S LAHME, C KEALHOFER, F KRAUSZ et al. Femtosecond single-electron diffraction. Structural Dynamics, 1(2014).

    [40] M AIDELSBURGER, F O KIRCHNER, F KRAUSZ et al. Single-electron pulses for ultrafast diffraction. Proceedings of the National Academy of Sciences of the United States of America, 107, 19714-19719(2010).

    [41] C WANG, Y KANG. Double-mode electrostatic dispersing prism for electron pulse time-domain compression. Optik, 125, 6352-6356(2014).

    [42] A GLISERIN, A APOLONSKI, F KRAUSZ et al. Compression of single-electron pulses with a microwave cavity. New Journal of Physics, 14(2012).

    [43] M GAO, H JEAN-RUEL, R R COONEY et al. Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. Optics Express, 20, 12048-12058(2012).

    [44] R P CHATELAIN, V R MORRISON, C GODBOUT et al. Ultrafast electron diffraction with radio-frequency compressed electron pulses. Applied Physics Letters, 101(2012).

    [45] S TOKITA, M HASHIDA, S INOUE et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse. Physical Review Letters, 95, 111911(2009).

    [46] P BAUM, A H ZEWAIL. 4D attosecond imaging with free electrons: diffraction methods and potential applications. Chemical Physics, 366, 2-8(2009).

    [47] P BAUM, A ZEWAIL. Femtosecond diffraction with chirped electron pulses. Chemical Physics Letters, 462, 14-17(2008).

    [48] F O KIRCHNER, A GLISERIN, F KRAUSZ et al. Laser streaking of free electrons at 25 keV. Nature Photonics, 8, 52-57(2014).

    [49] J YANG, M GUEHR, X SHEN et al. Diffractive imaging of coherent nuclear motion in isolated molecules. Physical Review Letters, 117, 153002(2016).

    [50] V R MORRISON, R P CHATELAIN, K L TIWARI et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science, 346, 445-448(2014).

    [51] M GAO, C LU, H JEAN-RUEL et al. Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature, 496, 343-346(2013).

    [52] R ERNSTORFER, M HARB, C T HEBEISEN et al. The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold. Science, 323, 1033-1037(2009).

    [53] M T HASSAN, J S BASKIN, B LIAO et al. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nature Photonics, 11, 425-430(2017).

    [54] M T HASSAN, A MOULET et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 530, 66-70(2016).

    [55] H C SHAO, A F STARACE. Detecting electron motion in atoms and molecules. Physical Review Letters, 105, 263201(2010).

    [56] V S YAKOVLEV, M I STOCKMAN, F KRAUSZ et al. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter. Scientific Reports, 5, 14581(2015).

    [57] G M VANACORE, A W P FITZPATRICK, A H ZEWAIL. Four-dimensional electron microscopy: ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today, 11, 228-249(2016).

    [58] T CHASE, M TRIGO, A H REID et al. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films. Applied Physics Letters, 108(2016).

    [59] A W P FITZPATRICK, G M VANACORE, A H ZEWAIL. Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 112, 3380-3385(2015).

    [60] A H ZEWAIL. 4D visualization of matter:Recent collected works of Ahmed H Zewail, Nobel Laureate(2014).

    [61] G SCIAINI, R J D MILLER. Femtosecond electron diffraction: Heralding the era of atomically resolved dynamics. Reports on Progress in Physics, 74(2011).

    [62] R J D MILLER, R ERNSTORFER, M HARB et al. 'Making the molecular movie': First frames. Acta Crystallographica a-Foundation and Advances, 66, 137-156(2010).

    [63] A H ZEWAIL, J M THOMAS. 4D ultrafast electron imaging: developments and applications, 179-273(2010).

    [64] A H ZEWAIL. 4D ultrafast electron diffraction, crystallography, and microscopy. Annual Review of Physical Chemistry, 57, 65-103(2006).

    [65] B W REED. Femtosecond electron pulse propagation for ultrafast electron diffraction. Journal of Applied Physics, 100(2006).

    [66] B J SIWICK, J R DWYER, R E JORDAN et al. Femtosecond electron diffraction studies of strongly driven structural phase transitions. Chemical Physics, 299, 285-305(2004).

    [67] C T HEBEISEN, G SCIAINI, M HARB et al. Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses. Optics Express, 16, 3334-3341(2008).

    [68] M EICHBERGER, H SCHAEFER, M KRUMOVA et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature, 468, 799-802(2010).

    [69] P BAUM, D S YANG, A H ZEWAIL. 4D visualization of transitional structures in phase transformations by electron diffraction. Science, 318, 788-792(2007).

    [70] H PARK, X WANG, S NIE et al. Direct and real-time probing of both coherent and thermal lattice motions. Solid State Communications, 136, 559-563(2005).

    [71] P MUSUMECI, J T MOODY, C M SCOBY et al. Laser-induced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction. Applied Physics Letters, 97(2010).

    [72] F FU, S LIU, P ZHU et al. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun. Review of Scientific Instruments, 85(2014).

    [73] Y GIRET, N NARUSE, S L DARASZEWICZ et al. Determination of transient atomic structure of laser-excited materials from time-resolved diffraction data. Applied Physics Letters, 103, 253107(2013).

    [74] R J D MILLER. Mapping atomic motions with ultrabright electrons: the chemists' gedanken experiment enters the lab frame. Annual Review of Physical Chemistry, 65, 583-604(2014).

    [75] L SCHäCHTER, W D KIMURA, I BEN-ZVI. Ultrashort microbunch electron source. AIP Conference Proceedings, 1777(2016).

    [76] H YANAGISAWA, C HAFNER, P DONA et al. Laser-induced field emission from a tungsten tip: Optical control of emission sites and the emission process. Physical Review B, 81, 115429(2010).

    [77] P HOMMELHOFF, Y SORTAIS, A AGHAJANI-TALESH et al. Field emission tip as a nanometer source of free electron femtosecond pulses. Physical Review Letters, 96(2006).

    [78] R E NEIDERT, P M PHILLIPS, S T SMITH et al. Field emission triodes. IEEE Transactions on Electron Devices, 38, 661-665(1991).

    [79] B BARWICK, H S PARK, O H KWON et al. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science, 322, 1227-1231(2008).

    [80] P HOMMELHOFF, C KEALHOFER, M A KASEVICH. Reaching the resolved tunnel regime for a femtosecond oscillator driven field emission electron source. Laser Physics, 19, 736-738(2009).

    [81] C ROPERS, D R SOLLI, C P SCHULZ et al. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Physical Review Letters, 98(2007).

    [82] C ROPERS, T ELSAESSER, G CERULLO et al. Ultrafast optical excitations of metallic nanostructures: From light confinement to a novel electron source. New Journal of Physics, 9, 397(2007).

    [83] B BARWICK, C CORDER, J STROHABER et al. Laser-induced ultrafast electron emission from a field emission tip. New Journal of Physics, 9, 142(2007).

    [84] P HOMMELHOFF, C KEALHOFER, M A KASEVICH. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Physical Review Letters, 97, 247402(2006).

    [85] B BARWICK, D J FLANNIGAN, A H ZEWAIL. Photon-induced near-field electron microscopy. Nature, 462, 902-906(2009).

    [86] F CARBONE, O H KWON, A H ZEWAIL. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science, 325, 181-184(2009).

    [87] V A LOBASTOV, R SRINIVASAN, A H ZEWAIL. Four-dimensional ultrafast electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 102, 7069-7073(2005).

    [88] M AESCHLIMANN, E HULL, J CAO et al. A picosecond electron gun for surface analysis. Review of Scientific Instruments, 66, 1000-1009(1995).

    [89] F BANFI, C GIANNETTI, G FERRINI et al. Experimental evidence of above-threshold photoemission in solids. Physical Review Letters, 94(2005).

    [90] B ZEITLER, K FLOETTMANN, F GRüNER. Linearization of the longitudinal phase space without higher harmonic field. Physical Review Special Topics-Accelerators and Beams, 18, 120102(2015).

    [91] A BUCK, M NICOLAI, K SCHMID et al. Real-time observation of laser-driven electron acceleration. Nature Physics, 7, 543(2011).

    [92] O LUNDH, C RECHATIN et al. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nature Physics, 7, 219-222(2011).

    [93] E ESAREY, C B SCHROEDER, W P LEEMANS. Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics, 81, 1229-1285(2009).

    [94] R J ENGLAND, R J NOBLE, K BANE et al. Dielectric laser accelerators. Reviews of Modern Physics, 86, 1337-1389(2014).

    [95] Min CHEN, Feng LIU, Boyuan LI等. Development and prospect of laser plasma wakefield accelerator. High Power Laser and Particle Beams, 32(2020).

    [96] M D PERRY, G MOUROU. Terawatt to petawatt subpicosecond lasers. Science, 264, 917-924(1994).

    [97] D STRICKLAND, G MOUROU. Compression of amplified chirped optical pulses. Optics Communications, 56, 219-221(1985).

    [98] S P MANGLES, C D MURPHY, Z NAJMUDIN et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature, 431, 535-538(2004).

    [99] C G R GEDDES, C TOTH, TILBORG JVAN et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 431, 538-541(2004).

    [100] J FAURE, Y GLINEC, A PUKHOV et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature, 431, 541-544(2004).

    [101] A J GONSALVES, K NAKAMURA, J DANIELS et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Physical Review Letters, 122(2019).

    [102] W P LEEMANS, A J GONSALVES, H S MAO et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Physical Review Letters, 113, 245002(2014).

    [103] S KNEIP, S R NAGEL, S F MARTINS et al. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Physical Review Letters, 103(2009).

    [104] N A M HAFZ, T M JEONG, I W CHOI et al. Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nature Photonics, 2, 571-577(2008).

    [105] W P LEEMANS, B NAGLER, A J GONSALVES et al. GeV electron beams from a centimetre-scale accelerator. Nature Physics, 2, 696-699(2006).

    [106] D GUéNOT, D GUSTAS, A VERNIER et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nature Photonics, 11, 293-296(2017).

    [107] K SCHMID. Few-cycle laser-driven electron acceleration. Physical Review Letters, 102, 124801(2009).

    [108] M P TOOLEY, B ERSFELD, S R YOFFE et al. Towards attosecond high-energy electron bunches: controlling self-injection in laser-wakefield accelerators through plasma-density modulation. Physical Review Letters, 119(2017).

    [109] V HORN, V PETRíLKA, M KRUS. Short electron bunches from injection by perpendicularly crossing pulses. Plasma Physics and Controlled Fusion, 61(2019).

    [110] Q ZHAO, S M WENG, M CHEN et al. Sub-femtosecond electron bunches in laser wakefield acceleration via injection suppression with a magnetic field. Plasma Physics and Controlled Fusion, 61(2019).

    [111] W SCHUMAKER, N NAKANII, C MCGUFFEY et al. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. Physical Review Letters, 110(2013).

    [112] C J ZHANG, J F HUA, Y WAN et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch. Physical Review Letters, 119(2017).

    [113] A ROUSSE. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Physical Review Letters, 93, 135005(2004).

    [114] E ESAREY, B A SHADWICK, P CATRAVAS et al. Synchrotron radiation from electron beams in plasma-focusing channels. Physical Review E, 65(2002).

    [115] R C SHAH, F ALBERT, KTA PHUOC et al. Coherence-based transverse measurement of synchrotron X-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons. Physical Review E, 74(2006).

    [116] S KNEIP, C MCGUFFEY, J L MARTINS et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nature Physics, 6, 980-983(2010).

    [117] S KNEIP, C MCGUFFEY, F DOLLAR et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Applied Physics Letters, 99(2011).

    [118] S FOURMAUX, S CORDE, K T PHUOC et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams. Optics Letters, 36, 2426-2428(2011).

    [119] J M COLE, D R SYMES, N C LOPES et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source. Proceedings of the National Academy of Sciences of the United States of America, 115, 6335-6340(2018).

    [120] J WENZ, S SCHLEEDE, K KHRENNIKOV et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source. Nature Communications, 6, 7568(2015).

    [121] B MAHIEU, N JOURDAIN, KTA PHUOC et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nature Communications, 9, 3276(2018).

    [122] R KODAMA, Y SENTOKU, Z L CHEN et al. Plasma devices to guide and collimate a high density of MeV electrons. Nature, 432, 1005-1008(2004).

    [123] H NAKAJIMA, S TOKITA, S INOUE et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target. Physical Review Letters, 110, 155001(2013).

    [124] W WANG, J LIU, Y CAI et al. Angular and energy distribution of fast electrons emitted from a solid surface irradiated by femtosecond laser pulses in various conditions. Physics of Plasmas, 17(2010).

    [125] G Y HU, A L LEI, W T WANG et al. Collimated hot electron jets generated from subwavelength grating targets irradiated by intense short-pulse laser. Physics of Plasmas, 17(2010).

    [126] F BRANDL, B HIDDING, J OSTERHOLZ et al. Directed acceleration of electrons from a solid surface by sub-10-fs laser pulses. Physical Review Letters, 102, 195001(2009).

    [127] Y T LI, X H YUAN, M H XU et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses. Physical Review Letters, 96, 165003(2006).

    [128] M GULDE, S SCHWEDA, G STORECK et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science, 345, 200-204(2014).

    [129] E QUINONEZ, J HANDALI, B BARWICK. Femtosecond photoelectron point projection microscope. Review of Scientific Instruments, 84, 103710(2013).

    [130] C KEALHOFER, S M FOREMAN, S GERLICH et al. Ultrafast laser-triggered emission from hafnium carbide tips. Physical Review B, 86(2012).

    [131] G HERINK, D R SOLLI, M GULDE et al. Field-driven photoemission from nanostructures quenches the quiver motion. Nature, 483, 190-193(2012).

    [132] M KRüGER, M SCHENK, P HOMMELHOFF. Attosecond control of electrons emitted from a nanoscale metal tip. Nature, 475, 78-81(2011).

    [133] R BORMANN, M GULDE, A WEISMANN et al. Tip-enhanced strong-field photoemission. Physical Review Letters, 105, 147601(2010).

    [134] M SCHENK, M KRüGER, P HOMMELHOFF. Strong-field above-threshold photoemission from sharp metal tips. Physical Review Letters, 105, 257601(2010).

    [135] H YANAGISAWA, C HAFNER, P DONá et al. Optical control of field-emission sites by femtosecond laser pulses. Physical Review Letters, 103, 257603(2009).

    [136] D EHBERGER, J HAMMER, M EISELE et al. Highly coherent electron beam from a laser-triggered tungsten needle tip. Physical Review Letters, 114, 227601(2015).

    [137] A FEIST, N BACH, N RUBIANO D A SILVA et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam. Ultramicroscopy, 176, 63-73(2017).

    [138] D S YANG, O F MOHAMMED, A H ZEWAIL. Scanning ultrafast electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 107, 14993-14998(2010).

    [139] B COOK, M BRONSGEEST, K HAGEN et al. Improving the energy spread and brightness of thermal-field (Schottky) emitters with PHAST-photo assisted Schottky tip. Ultramicroscopy, 109, 403-412(2009).

    [140] G FURSEY. Field emission in vacuum microelectronics. Microdevices(2005).

    [141] T ICHIMURA, R SHIMIZU et al. Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters. Physical Review Letters, 92, 246103(2004).

    [142] K NAGAOKA, T YAMASHITA, S UCHIYAMA et al. Monochromatic electron emission from the macroscopic quantum state of a superconductor. Nature, 396, 557-559(1998).

    [143] A J MCCULLOCH, D V SHELUDKO, M JUNKER et al. High-coherence picosecond electron bunches from cold atoms. Nature Communications, 4, 1692(2013).

    [144] W J ENGELEN, DER HEIJDEN M AVAN, D J BAKKER et al. High-coherence electron bunches produced by femtosecond photoionization. Nature Communications, 4, 1693(2013).

    [145] DER GEER S BVAN, M J DE LOOS, E J D VREDENBREGT et al. Ultracold electron source for single-shot, ultrafast electron diffraction. Microscopy and Microanalysis, 15, 282-289(2009).

    [146] O J LUITEN, B J CLAESSENS, DER GEER S BVAN et al. Ultracold electron sources. International Journal of Modern Physics A, 22, 3882-3897(2007).

    [147] B J CLAESSENS, DER GEER S BVAN, G TABAN et al. Ultracold electron source. Physical Review Letters, 95, 164801(2005).

    [148] J. METCALFHAROLD, P V D STRATEN. Laser cooling and trapping. Graduate texts in contemporary physics(1999).

    [149] W J ENGELEN, E P SMAKMAN, D J BAKKER et al. Effective temperature of an ultracold electron source based on near-threshold photoionization. Ultramicroscopy, 136, 73-80(2014).

    [150] G TABAN, M P REIJNDERS, B FLESKENS et al. Ultracold electron source for single-shot diffraction studies. EPL, 91, 46004(2010).

    [151] S D SALIBA, C T PUTKUNZ, D V SHELUDKO et al. Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source. Optics Express, 20, 3967-3974(2012).

    [152] M W V MOURIK, W J ENGELEN, E J D VREDENBREGT et al. Ultrafast electron diffraction using an ultracold source. Structural Dynamics, 1(2014).

    [153] R W SPEIRS, C T PUTKUNZ, A J MCCULLOCH et al. Single-shot electron diffraction using a cold atom electron source. Journal of Physics B-Atomic Molecular and Optical Physics, 48, 214002(2015).

    [154] L WIMMER, G HERINK, D R SOLLI et al. Terahertz control of nanotip photoemission. Nature Physics, 10, 432-436(2014).

    [155] A FEIST, K E ECHTERNKAMP, J SCHAUSS et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature, 521, 200-203(2015).

    [156] D J FLANNIGAN, A H ZEWAIL. 4D electron microscopy: Principles and applications. Accounts of Chemical Research, 45, 1828-1839(2012).

    [157] Y MORIMOTO, P BAUM. Attosecond control of electron beams at dielectric and absorbing membranes. Physical Review A, 97(2018).

    [158] S A HILBERT, C UITERWAAL, B BARWICK et al. Temporal lenses for attosecond and femtosecond electron pulses. Proceedings of the National Academy of Sciences of the United States of America, 106, 10558-10563(2009).

    [159] M FERRARIO, D ALESINI, A BACCI et al. Experimental demonstration of emittance compensation with velocity bunching. Physical Review Letters, 104(2010).

    [160] S G ANDERSON, P MUSUMECI, J B ROSENZWEIG et al. Velocity bunching of high-brightness electron beams. Physical Review Special Topics-Accelerators and Beams, 8(2005).

    [161] X H LU, C X TANG, R K LI et al. Generation and measurement of velocity bunched ultrashort bunch of pC charge. Physical Review Special Topics-Accelerators and Beams, 18(2015).

    [162] A GAHLMANN, S T PARK, A H ZEWAIL. Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions. Physical Chemistry Chemical Physics, 10, 2894-2909(2008).

    [163] B J SIWICK, J R DWYER, R E JORDAN et al. Ultrafast electron optics: propagation dynamics of femtosecond electron packets. Journal of Applied Physics, 92, 1643-1648(2002).

    [164] C M SCOBY, R K LI, E THRELKELD et al. Single-shot 35 fs temporal resolution electron shadowgraphy. Applied Physics Letters, 102(2013).

    [165] G H KASSIER, N ERASMUS, K HAUPT et al. Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction. Applied Physics B-Lasers and Optics, 109, 249-257(2012).

    [166] G H KASSIER, K HAUPT, N ERASMUS et al. Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction. Journal of Applied Physics, 105, 113111(2009).

    [167] A M MICHALIK, E Y SHERMAN, J E SIPE. Theory of ultrafast electron diffraction: the role of the electron bunch properties. Journal of Applied Physics, 104(2008).

    [168] J B ROSENZWEIG. Fundamentals of beam physics(2003).

    [169] O J LUITEN, DER GEER S BVAN, M J DE LOOS et al. How to realize uniform three-dimensional ellipsoidal electron bunches. Physical Review Letters, 93(2004).

    [170] O ZANDI, K J WILKIN, Y XIONG et al. High current table-top setup for femtosecond gas electron diffraction. Structural Dynamics, 4(2017).

    [171] M WALBRAN, A GLISERIN, K JUNG et al. 5-femtosecond laser-electron synchronization for pump-probe crystallography and diffraction. Physical Review Applied, 4(2015).

    [172] S SCHULZ, I GRGURAŠ, C BEHRENS et al. Femtosecond all-optical synchronization of an X-ray free-electron laser. Nature Communications, 6, 5938(2015).

    [173] G J H BRUSSAARD, A LASSISE, P L E M PASMANS et al. Direct measurement of synchronization between femtosecond laser pulses and a 3 GHz radio frequency electric field inside a resonant cavity. Applied Physics Letters, 103, 141105(2013).

    [174] D ZHANG, A FALLAHI, M HEMMER et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photonics, 12, 336-342(2018).

    [175] E A NANNI, W R HUANG, K H HONG et al. Terahertz-driven linear electron acceleration. Nature Communications, 6, 8486(2015).

    [176] D EHBERGER, A RYABOV, P BAUM. Tilted electron pulses. Physical Review Letters, 121(2018).

    [177] R K LI, M C HOFFMANN, E A NANNI et al. Terahertz-based subfemtosecond metrology of relativistic electron beams. Physical Review Accelerators and Beams, 22(2019).

    [178] E CURRY, S FABBRI, J MAXSON et al. Meter-scale terahertz-driven acceleration of a relativistic beam. Physical Review Letters, 120(2018).

    [179] L ZHAO, Z WANG, C LU et al. Terahertz streaking of few-femtosecond relativistic electron beams. Physical Review X, 8(2018).

    [180] T V OUDHEUSDEN, P L E M PASMANS, S B V D GEER et al. Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Physical Review Letters, 105, 264801(2010).

    [181] D EHBERGER, K J MOHLER, T VASILEIADIS et al. Terahertz compression of electron pulses at a planar mirror membrane. Physical Review Applied, 11(2019).

    [182] M R OTTO, L P R D COTRET, M J STERN et al. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization. Structural Dynamics, 4(2017).

    [183] J BREUER, P HOMMELHOFF. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Physical Review Letters, 111, 134803(2013).

    [184] Y MORIMOTO, P BAUM. Single-cycle optical control of beam electrons. Physical Review Letters, 125, 193202(2020).

    [185] M KOZAK, N SCHOENENBERGER, P HOMMELHOFF. Ponderomotive generation and detection of attosecond free-electron pulse trains. Physical Review Letters, 120, 103203(2018).

    [186] S BANERJEE, S SEPKE, R SHAH et al. Optical deflection and temporal characterization of an ultrafast laser-produced electron beam. Physical Review Letters, 95(2005).

    [187] Y LIU, J ZHANG, H WU et al. Ponderomotive scattering of electrons and its application to measure the pulse duration of ultrafast electron beams. Journal of Applied Physics, 103(2008).

    [188] C T HEBEISEN, R ERNSTORFER, M HARB et al. Femtosecond electron pulse characterization using laser ponderomotive scattering. Optics Letters, 31, 3517-3519(2006).

    [189] J FABIAŃSKA, G KASSIER, T FEURER. Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution. Scientific Reports, 4, 5645(2014).

    [190] P BAUM, A H ZEWAIL. Breaking resolution limits in ultrafast electron diffraction and microscopy. Proceedings of the National Academy of Sciences of the United States of America, 103, 16105-16110(2006).

    [191] C ZHOU, Y BAI, L SONG et al. Direct mapping of attosecond electron dynamics. Nature Photonics, 15, 216-221(2021).

    [192] S T PARK, M LIN, A H ZEWAIL. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New Journal of Physics, 12, 123028(2010).

    [193] A YURTSEVER, DER VEEN R MVAN, A H ZEWAIL. Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science, 335, 59-64(2012).

    [194] L PIAZZA, T T A LUMMEN, E QUINONEZ et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nature Communications, 6, 6407(2015).

    [195] X FU, F BARANTANI, S GARGIULO et al. Nanoscale-femtosecond dielectric response of mott insulators captured by two-color near-field ultrafast electron microscopy. Nature Communications, 11, 5770-5770(2020).

    [196] S T PARK, A H ZEWAIL. Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning. New Journal of Physics, 14(2012).

    [197] D A PLEMMONS, PARK STAE, A H ZEWAIL et al. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy. Ultramicroscopy, 146, 97-102(2014).

    [198] G STORECK, J G HORSTMANN, T DIEKMANN et al. Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction. Structural Dynamics, 7(2020).

    [199] J G HORSTMANN, H BöCKMANN et al. Coherent control of a surface structural phase transition. Nature, 583, 232-236(2020).

    [200] F QI, Z MA, L ZHAO et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Physical Review Letters, 124, 134803(2020).

    [201] J YANG, X ZHU, NUNES J PF. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science, 368, 885-889(2020).

    [202] A KOGAR, A ZONG, P E DOLGIREV et al. Light-induced charge density wave in LaTe3. Nature Physics, 16, 159-163(2020).

    [203] C M NYBY, C D PEMMARAJU et al. An ultrafast symmetry switch in a weyl semimetal. Nature, 565, 61-66(2019).

    [204] http://www.physics.mcgill.ca/siwicklab/hardware.html

    [205] F CARBONE, D S YANG, E GIANNINI et al. Direct role of structural dynamics in electron-lattice coupling of superconducting cuprates. Proceedings of the National Academy of Sciences of the United States of America, 105, 20161-20166(2008).

    [206] C Y RUAN, V A LOBASTOV, F VIGLIOTTI et al. Ultrafast electron crystallography of interfacial water. Science, 304, 80-84(2004).

    [207] S CHEN, M T SEIDEL, A H ZEWAIL. Atomic-scale dynamical structures of fatty acid bilayers observed by ultrafast electron crystallography. Proceedings of the National Academy of Sciences of the United States of America, 102, 8854-8859(2005).

    [208] L P R DE COTRET, J H POHLS, M J STERN et al. Time- and momentum-resolved phonon population dynamics with ultrafast electron diffuse scattering. Physical Review B, 100, 214115(2019).

    [209] H S PARK, J S BASKIN et al. Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy. Nano Letters, 7, 2545-2551(2007).

    [210] H S PARK, J S BASKIN, B BARWICK et al. 4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics. Ultramicroscopy, 110, 7-19(2009).

    [211] A YURTSEVER, A H ZEWAIL. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science, 326, 708-712(2009).

    [212] O H KWON, B BARWICK, H S PARK et al. 4D visualization of embryonic, structural crystallization by single-pulse microscopy. Proceedings of the National Academy of Sciences of the United States of America, 105, 8519-8524(2008).

    [213] O H KWON, A H ZEWAIL. 4D electron tomography. Science, 328, 1668-1673(2010).

    [214] D R CREMONS, D A PLEMMONS, D J FLANNIGAN. Defect-mediated phonon dynamics in TaS2 and WSe2. Structural Dynamics, 4(2017).

    [215] Y ZHANG, D J FLANNIGAN. Observation of anisotropic strain-wave dynamics and few-layer dephasing in MoS2 with ultrafast electron microscopy. Nano Letters, 19, 8216-8224(2019).

    [216] M ZHANG, G CAO, H TIAN et al. Picosecond view of a martensitic transition and nucleation in the shape memory alloy Mn50Ni40Sn10 by four-dimensional transmission electron microscopy. Physical Review B, 96, 174203(2017).

    [217] A RYABOV, P BAUM. Electron microscopy of electromagnetic waveforms. Science, 353, 374-377(2016).

    [218] U J LORENZ, A H ZEWAIL. Observing liquid flow in nanotubes by 4D electron microscopy. Science, 344, 1496-1500(2014).

    [219] B CHEN, X FU, J TANG et al. Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 114, 12876-12881(2017).

    [220] X FU, S LIU, B CHEN et al. Observation and control of unidirectional ballistic dynamics of nanoparticles at a liquid-gas interface by 4D electron microscopy. ACS Nano, 15, 6801-6810(2021).

    [221] T DANZ, T DOMRÖSE, C ROPERS. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science, 371, 371-374(2021).

    [222] T T A LUMMEN, R J LAMB, G BERRUTO et al. Imaging and controlling plasmonic interference fields at buried interfaces. Nature Communications, 7, 13156(2016).

    [223] K WANG, R DAHAN, M SHENTCIS et al. Coherent interaction between free electrons and a photonic cavity. Nature, 582, 50-54(2020).

    [224] O KFIR, H LOURENÇO-MARTINS, G STORECK et al. Controlling free electrons with optical whispering-gallery modes. Nature, 582, 46-49(2020).

    [225] G M VANACORE, G BERRUTO, I MADAN et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nature Materials, 18, 573-579(2019).

    [226] N RDA SILVA, M MOELLER, A FEIST et al. Nanoscale mapping of ultrafast magnetization dynamics with femtosecond lorentz microscopy. Physical Review X, 8(2018).

    [227] X FU, S D POLLARD, B CHEN et al. Optical manipulation of magnetic vortices visualized in situ by lorentz electron microscopy. Science Advances, 4(2018).

    [228] G CAO, S JIANG, J AKERMAN et al. Femtosecond laser driven precessing magnetic gratings. Nanoscale, 13, 3746-3756(2021).

    [229] A W P FITZPATRICK, U J LORENZ, G M VANACORE et al. 4D cryo-electron microscopy of proteins. Journal of the American Chemical Society, 135, 19123-19126(2013).

    [230] U J LORENZ, A H ZEWAIL. Biomechanics of DNA structures visualized by 4D electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 110, 2822-2827(2013).

    [231] X FU, B CHEN, J TANG et al. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science, 355, 494-498(2017).

    [232] X FU, B CHEN, J TANG et al. Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Science Advances, 3(2017).

    [233] X FU, B CHEN, C LI et al. Direct visualization of photomorphic reaction dynamics of plasmonic nanoparticles in liquid by four-dimensional electron microscopy. Journal of Physical Chemistry Letters, 9, 4045-4052(2018).

    [234] C JING, Y ZHU, A LIU et al. Tunable electron beam pulser for picoseconds stroboscopic microscopy in transmission electron microscopes. Ultramicroscopy, 207, 112829(2019).

    [235] K B SCHLIEP, M B KATZ et al. Laser-free GHz stroboscopic transmission electron microscope: Components, system integration, and practical considerations for pump-probe measurements. Review of Scientific Instruments, 91(2020).

    [236] X FU, E WANG, Y ZHAO et al. Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy. Science Advances, 6(2020).

    [237] A LASSISE, P H A MUTSAERS, O J LUITEN. Compact, low power radio frequency cavity for femtosecond electron microscopy. Review of Scientific Instruments, 83(2012).

    [238] W VERHOEVEN, RENS J F MVAN, E R KIEFT et al. High quality ultrafast transmission electron microscopy using resonant microwave cavities. Ultramicroscopy, 188, 85-89(2018).

    [239] O F MOHAMMED, D S YANG et al. 4D scanning ultrafast electron microscopy: visualization of materials surface dynamics. Journal of the American Chemical Society, 133, 7708-7711(2011).

    [240] B LIAO, E NAJAFI. Scanning ultrafast electron microscopy: A novel technique to probe photocarrier dynamics with high spatial and temporal resolutions. Materials Today Physics, 2, 46-53(2017).

    [241] E NAJAFI, T D SCARBOROUGH, J TANG et al. Four-dimensional imaging of carrier interface dynamics in p-n junctions. Science, 347, 164-167(2015).

    [242] B LIAO, H ZHAO, E NAJAFI et al. Spatial-temporal imaging of anisotropic photocarrier dynamics in black phosphorus. Nano Letters, 17, 3675-3680(2017).

    [243] M ZANI, V SALA, G IRDE et al. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy. Ultramicroscopy, 187, 93-97(2018).

    [244] J SUN, V A MELNIKOV, J I KHAN et al. Real-space imaging of carrier dynamics of materials surfaces by second-generation four-dimensional scanning ultrafast electron microscopy. Journal of Physical Chemistry Letters, 6, 3884-3890(2015).

    [245] A M EL-ZOHRY, B S SHAHEEN, V M BURLAKOV et al. Extraordinary carrier diffusion on CdTe surfaces uncovered by 4D electron microscopy. Chem, 5, 706-718(2019).

    [246] R BOSE, A ADHIKARI, V M BURLAKOV et al. Imaging localized energy states in silicon-doped InGaN nanowires using 4D electron microscopy. ACS Energy Letters, 3, 476-481(2018).

    [247] A STECKENBORN, H MUNZEL, D BIMBERG. Cathodoluminescence lifetime pattern of GaAs-surfaces around dislocations. Journal of Luminescence, 24, 351-354(1981).

    [248] M HASTENRATH, E KUBALEK. Time-resolved cathodoluminescence in scanning electron-microscopy. Scanning Electron Microscopy, 1, 157-173(1982).

    [249] S MYHAJLENKO, W K KE. Time-resolved cathodoluminescence by delayed coincidence. Journal of Physics E-Scientific Instruments, 17, 200-203(1984).

    [250] M MERANO, S SONDEREGGER, A CROTTINI et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature, 438, 479-482(2005).

    [251] K FURUSAWA, Y ISHIKAWA, M TASHIRO et al. Local carrier dynamics around the sub-surface basal-plane stacking faults of GaN studied by spatio-time-resolved cathodoluminescence using a front-excitation-type photoelectron-gun. Applied Physics Letters, 103(2013).

    [252] M SHAHMOHAMMADI, G JACOPIN, X FU et al. Exciton hopping probed by picosecond time-resolved cathodoluminescence. Applied Physics Letters, 107, 141101(2015).

    [253] X FU, G JACOPIN, M SHAHMOHAMMADI et al. Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires. ACS Nano, 8, 3412-3420(2014).

    Ye TIAN, Chuliang ZHOU, Xuewen FU, Shaozheng JI, Yuxin LENG, Ruxin LI. Research Progress of Generation and Control of Ultrafast and Coherent Electron Sources Based on Optical Fields (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850202
    Download Citation