• Advanced Photonics
  • Vol. 7, Issue 2, 026005 (2025)
Zhong Wen1,2,3,†, Qilin Deng1,2, Quanzhi Li1,2,3, Yizhou Tan4,5..., Jingshan Zhong6, Chiming Zhang1,2,3, Jiahe Zhang3, Clemens F. Kaminski7, Ying Gu4,5, Xu Liu1,2,3 and Qing Yang1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Hangzhou, China
  • 2Zhejiang University, International Research Center for Advanced Photonics, Hangzhou, China
  • 3Zhejiang University, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • 4Chinese PLA General Hospital, The First Medical Center, Department of Laser Medicine, Beijing, China
  • 5Chinese PLA General Hospital, Hainan Hospital, Laser Medicine Center, Sanya, China
  • 6Zhejiang Laboratory, Research Center for Intelligent Manufacturing Computing, Hangzhou, China
  • 7University of Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge, United Kingdom
  • show less
    DOI: 10.1117/1.AP.7.2.026005 Cite this Article Set citation alerts
    Zhong Wen, Qilin Deng, Quanzhi Li, Yizhou Tan, Jingshan Zhong, Chiming Zhang, Jiahe Zhang, Clemens F. Kaminski, Ying Gu, Xu Liu, Qing Yang, "Cascaded adaptive aberration-eliminating multimode fiber imaging," Adv. Photon. 7, 026005 (2025) Copy Citation Text show less
    References

    [1] R. Weissleder, M. Pittet. Imaging in the era of molecular oncology. Nature, 452, 580-589(2008).

    [2] G. T. Kennedy et al. Targeted detection of cancer at the cellular level during biopsy by near-infrared confocal laser endomicroscopy. Nat. Commun., 13, 2711(2022).

    [3] L. Soon, F. Braet, J. Condeelis. Moving in the right direction—nanoimaging in cancer cell motility and metastasis. Microsc. Res. Tech., 70, 252-257(2007).

    [4] F. J. Voskuil et al. Intraoperative imaging in pathology-assisted surgery. Nat. Biomed. Eng., 6, 503-514(2022).

    [5] J. Mannath, K. Ragunath. Role of endoscopy in early oesophageal cancer. Nat. Rev. Gastroenterol. Hepatol., 13, 720-730(2016).

    [6] L. Wijmans et al. Needle-based confocal laser endomicroscopy for real-time diagnosing and staging of lung cancer. Eur. Respir. J., 53, 1801520(2019).

    [7] B. A. Flusber et al. Fiber-optic fluorescence imaging. Nat. Methods, 2, 941-950(2005).

    [8] T. Kramer et al. Bronchoscopic needle-based confocal laser endomicroscopy (nCLE) as a real-time detection tool for peripheral lung cancer. Thorax, 77, 370-377(2022).

    [9] J. Sun et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light Sci. Appl., 11, 204(2022).

    [10] E. Pshenay-Severin et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light Sci. Appl., 10, 207(2021).

    [11] R. Kiesslich et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology, 127, 706-713(2004).

    [12] G. Li et al. Ultra-compact microsystems-based confocal endomicroscope. IEEE Trans. Med. Imag., 39, 2406-2414(2020).

    [13] A. Lombardini et al. High-resolution multimodal flexible coherent Raman endoscope. Light Sci. Appl., 7, 10(2018).

    [14] M. Goetz, N. P. Malek, R. Kiesslich. Microscopic imaging in endoscopy: endomicroscopy and endocytoscopy. Nat. Rev. Gastroenterol. Hepatol., 11, 11-18(2014).

    [15] S. Turtaev et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl., 7, 92(2018).

    [16] Z. Wen et al. Fast volumetric fluorescence imaging with multimode fibers. Opt. Lett., 45, 4931-4934(2020).

    [17] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibers. Nat. Photonics, 9, 529-535(2015).

    [18] Z. Wen et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging. Nat. Photonics, 17, 679-687(2023).

    [19] J. Zhong et al. Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform. Adv. Photonics Nexus, 2, 056007(2023).

    [20] C. S. Carla et al. Repeated imaging through a multimode optical fiber using adaptive optics. Biomed. Opt. Express, 13, 662-675(2022).

    [21] S. A. Vasquez-Lopez et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light Sci. Appl., 7, 110(2018).

    [22] G. S. D. Gordon et al. Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access. Phys. Rev. X., 9, 041050(2019).

    [23] C. Tischbirek et al. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator. Proc. Natl. Acad. Sci. U. S. A., 112, 11377-11382(2015).

    [24] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [25] K. M. Hampson et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers, 1, 68(2021).

    [26] M. J. Booth. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl., 3, e165(2014).

    [27] Z. Qin et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. Light Sci. Appl., 9, 79(2020).

    [28] K. Wang et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods, 11, 625-628(2014).

    [29] K. Wang et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun., 6, 7276(2015).

    [30] C. Rodríguez et al. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nat. Methods, 18, 1259-1264(2021).

    [31] J. Tang, R. N. Germain, M. Cui. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. U. S. A., 109, 8434-8439(2012).

    [32] D. Débarre et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett., 34, 2495-2497(2009).

    [33] N. D. Shemonski et al. Computational high-resolution optical imaging of the living human retina. Nat. Photonics, 9, 440-443(2015).

    [34] C. Wang, N. Ji. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy. Opt. Lett., 37, 2001-2003(2012).

    [35] C. Wang, N. Ji. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Opt. Express, 21, 27142-27154(2013).

    [36] N. Ji, D. E. Milkie, E. Betzig. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods, 7, 141-147(2009).

    [37] P. Fan et al. Learning enabled continuous transmission of spatially distributed information through multimode fibers. Laser Photonics Rev., 15, 2000348(2021).

    [38] Q. Hu et al. Universal adaptive optics for microscopy through embedded neural network control. Light Sci. Appl., 12, 270(2023).

    [39] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [40] Z. Qin et al. Adaptive optics two-photon endomicroscopy enables deep-brain imaging at synaptic resolution over large volumes. Sci. Adv., 6, eabc6521(2020).

    Zhong Wen, Qilin Deng, Quanzhi Li, Yizhou Tan, Jingshan Zhong, Chiming Zhang, Jiahe Zhang, Clemens F. Kaminski, Ying Gu, Xu Liu, Qing Yang, "Cascaded adaptive aberration-eliminating multimode fiber imaging," Adv. Photon. 7, 026005 (2025)
    Download Citation