• Chinese Journal of Lasers
  • Vol. 46, Issue 5, 0508003 (2019)
Qi Zhang1, Qiang Wu1、*, Bin Zhang2, Chongpei Pan1, Ride Wang1, Yao Lu1, Jiwei Qi1, and Jingjun Xu1
Author Affiliations
  • 1Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • 2College of Science, Civil Aviation University of China, Tianjin 300300, China
  • show less
    DOI: 10.3788/CJL201946.0508003 Cite this Article Set citation alerts
    Qi Zhang, Qiang Wu, Bin Zhang, Chongpei Pan, Ride Wang, Yao Lu, Jiwei Qi, Jingjun Xu. Terahertz Integration and Spatio-Temporal Super-Resolution Imaging on LiNbO3 Chip[J]. Chinese Journal of Lasers, 2019, 46(5): 0508003 Copy Citation Text show less
    References

    [1] Sajadi M, Wolf M, Kampfrath T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles[J]. Nature Communications, 8, 14963(2017). http://www.ncbi.nlm.nih.gov/pubmed/28393836

    [2] Jelic V, Iwaszczuk K, Nguyen P H et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 13, 591-598(2017). http://www.nature.com/abstractpagefinder/10.1038/nphys4047

    [3] Pan L D, Kim S K, Ghosh A et al. Low-energy electrodynamics of novel spin excitations in the quantum spin ice Yb2Ti2O7[J]. Nature Communications, 5, 4970(2014). http://www.nature.com/articles/ncomms5970

    [4] Cole W T S, Farrell J D, Wales D J et al. . Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm[J]. Science, 352, 1194-1197(2016). http://www.ncbi.nlm.nih.gov/pubmed/27257252

    [5] Borodianskyi E A, Krasnov V M. Josephson emission with frequency span 1-11 THz from small Bi2Sr2CaCu2O8+δ mesa structures[J]. Nature Communications, 8, 1742(2017). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701082/

    [6] Dienst A, Casandruc E, Fausti D et al. Optical excitation of Josephson plasma solitons in a cuprate superconductor[J]. Nature Materials, 12, 535-541(2013). http://www.nature.com/sifinder/10.1038/nmat3580

    [7] Davies A G, Burnett A D, Fan W H et al. Terahertz spectroscopy of explosives and drugs[J]. Materials Today, 11, 18-26(2008). http://www.sciencedirect.com/science/article/pii/S1369702108700166

    [8] Woolard D L, Brown R, Pepper M et al. Terahertz frequency sensing and imaging: a time of reckoning future applications?[J]. Proceedings of the IEEE, 93, 1722-1743(2005). http://ieeexplore.ieee.org/document/1512493

    [9] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016). http://europepmc.org/articles/PMC4928995/

    [10] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011). http://link.springer.com/article/10.1007/s10762-010-9758-1

    [11] Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013). http://www.nature.com/nphoton/journal/v7/n12/abs/nphoton.2013.275.html

    [12] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [13] Dragoman D, Dragoman M. Terahertz fields and applications[J]. Progress in Quantum Electronics, 28, 1-66(2004).

    [14] Dey I, Jana K, Fedorov V Y et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids[J]. Nature Communications, 8, 1184(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5662695/

    [15] Chai T T, Chai L, Zhu W A et al. Improving output efficiency of terahertz wave by controlling temporal and spatial chirps of pump pulses. Acta Optica Sinica, 36, 1026019(2016).

    [16] Viti L, Hu J, Coquillat D et al. Black phosphorus terahertz photodetectors[J]. Advanced Materials, 27, 5567-5572(2015).

    [17] Huang Z M, Zhou W, Tong J C et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced Materials, 28, 112-117(2016). http://onlinelibrary.wiley.com/doi/10.1002/adma.201503350/pdf

    [18] Stoyanov N S, Feurer T, Ward D W et al. Integrated diffractive terahertz elements[J]. Applied Physics Letters, 82, 674-676(2003).

    [19] Huang S W, Yang J H, Yang S H et al. Globally stable microresonator turing pattern formation for coherent high-power THz radiation on-chip[J]. Physical Review X, 7, 041002(2017). http://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.041002

    [20] Yao B C, Liu Y, Huang S W et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photonics, 12, 22-28(2018). http://www.nature.com/articles/s41566-017-0054-7

    [21] Feurer T, Stoyanov N S, Ward D W et al. Terahertz polaritonics[J]. Annual Review of Materials Research, 37, 317-350(2007).

    [22] Stoyanov N S, Ward D W, Feurer T et al. Terahertz polariton propagation in patterned materials[J]. Nature Materials, 1, 95-98(2002). http://europepmc.org/abstract/MED/12618821

    [23] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555(1984). http://adsabs.harvard.edu/abs/1984PhRvL..53.1555A

    [24] Werley C A, Nelson K A. Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts[J]. Applied Physics Letters, 95, 103304(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5238453

    [25] Chen Z, Zhou X B, Werley C A et al. Generation of high power tunable multicycle teraherz pulses[J]. Applied Physics Letters, 99, 071102(2011). http://scitation.aip.org/content/aip/journal/apl/99/7/10.1063/1.3624919

    [26] Yang H M, Qi J W, Pan C P et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in lithium niobate subwavelength waveguide[J]. Optics Express, 25, 14766(2017). http://www.onacademic.com/detail/journal_1000040493392210_bf5d.html

    [27] Yang C L, Wu Q, Xu J J et al. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide[J]. Optics Express, 18, 26351(2010). http://www.ncbi.nlm.nih.gov/pubmed/21164986

    [28] Werley C A, Fan K B, Strikwerda A C et al. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements[J]. Optics Express, 20, 8551(2012). http://www.ncbi.nlm.nih.gov/pubmed/22513564

    [29] Zhang Q, Qi J W, Wu Q et al. Surface enhancement of THz wave by coupling a subwavelength LiNbO3 slab waveguide with a composite antenna structure[J]. Scientific Reports, 7, 17602(2017). http://www.ncbi.nlm.nih.gov/pubmed/29242537

    [30] Zhang B, Wu Q, Pan C P et al. THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide[J]. Optics Express, 23, 16042(2015). http://www.ncbi.nlm.nih.gov/pubmed/26193578

    [31] Wang R D, Wu Q, Zhang Q et al. Conversion from terahertz-guided waves to surface waves with metasurface[J]. Optics Express, 26, 31233(2018).

    [32] Wu Q, Werley C A, Lin K H et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide[J]. Optics Express, 17, 9219(2009). http://www.ncbi.nlm.nih.gov/pubmed/19466172

    [33] Werley C A, Wu Q, Lin K H et al. Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3[J]. Journal of the Optical Society of America B, 27, 2350(2010). http://www.opticsinfobase.org/abstract.cfm?URI=josab-27-11-2350

    [34] Wu Q, Chen Q Q, Zhang B et al. Terahertz phonon polariton imaging[J]. Frontiers of Physics, 8, 217-227(2013).

    [35] Sivarajah P. Ofori-Okai B K, Teo S M, et al. The homogenization limit and waveguide gradient index devices demonstrated through direct visualization of THz fields[J]. New Journal of Physics, 17, 013013(2015).

    [36] Pan C P, Wu Q, Zhang Q et al. Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors[J]. Optics Express, 25, 9768(2017). http://www.onacademic.com/detail/journal_1000040493340210_5a0c.html

    [37] Gan Z Z. Advances in polariton research: to commemorate the 90th anniversary of Mr. Huang Kun[J]. Physics, 38, 581-591(2009).

    [38] Huang K. On the interaction between the radiation field and ionic crystals[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 208, 352-365(1951). http://www.worldscientific.com/doi/abs/10.1142/9789812793720_0006

    [39] Huang K. Lattice vibrations and optical waves in ionic crystals[J]. Nature, 167, 779-780(1951). http://link.springer.com/article/10.1038/167779b0

    [40] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals[J]. Physical Review, 112, 1555(1958). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1958PhDT........29H&db_key=PHY&link_type=ABSTRACT

    [41] Henry C H, Hopfield J J. Raman scattering by polaritons[J]. Physical Review Letters, 15, 964(1965).

    [42] Ward D W. Polaritonics: an intermediate regime between electronics and photonics[D]. Cambridge: Massachusetts Institute of Technology(2005).

    [43] Chen Z. Modeling phonon-polariton generation and control in ferroelectric crystals[D]. Cambridge: Massachusetts Institute of Technology(2009).

    [44] Dougherty T P, Wiederrecht G P, Nelson K A. Impulsive stimulated Raman scattering experiments in the polariton regime[J]. Journal of the Optical Society of America B, 9, 2179(1992). http://www.opticsinfobase.org/abstract.cfm?uri=josab-9-12-2179

    [45] Crimmins T F, Stoyanov N S, Nelson K A. Heterodyned impulsive stimulated Raman scattering of phonon-polaritons in LiTaO3 and LiNbO3[J]. The Journal of Chemical Physics, 117, 2882-2896(2002). http://scitation.aip.org/content/aip/journal/jcp/117/6/10.1063/1.1491948

    [46] Rolland A, Loas G, Brunel M et al. Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source[J]. Optics Express, 19, 17944(2011). http://www.ncbi.nlm.nih.gov/pubmed/21935158

    [47] Li D, Ma G H. Pump-wavelength dependence of terahertz radiation via optical rectification in (110)-oriented ZnTe crystal[J]. Journal of Applied Physics, 103, 123101(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4946038

    [48] Hu B B, Zhang X C, Auston D H et al. Free-space radiation from electro-optic crystals[J]. Applied Physics Letters, 56, 506-508(1990). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4860991

    [49] Lu Y, Wu Q, Zhang Q et al. Propagation of THz pulses in rectangular subwavelength dielectric waveguides[J]. Journal of Applied Physics, 123, 223103(2018). http://adsabs.harvard.edu/abs/2018JAP...123v3103L

    [50] Ofori-Okai B K, Sivarajah P, Werley C A et al. . Direct experimental visualization of waves and band structure in 2D photonic crystal slabs[J]. New Journal of Physics, 16, 053003(2014). http://adsabs.harvard.edu/abs/2014NJPh...16e3003O

    [51] Li S S, Chang S J, Zhang H et al. Terahertz polarization splitter based on filled porous fiber[J]. Acta Optica Sinica, 34, 0723003(2014).

    [52] Mao C X, Zang X F, Zhu Y M. Research on interference of near-field terahertz vortex beams[J]. Chinese Journal of Lasers, 46, 0114001(2019).

    [53] Sivarajah P, Werley C A. Ofori-Okai B K, et al. Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3[J]. Applied Physics A, 112, 615-622(2013). http://link.springer.com/article/10.1007/s00339-013-7833-x

    [54] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [55] Kippenberg T J, Vahala K J. Cavity opto-mechanics[J]. Optics Express, 15, 17172(2007).

    [56] Chen H T. O'Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics, 2, 295-298(2008).

    [57] Padilla W J, Aronsson M T, Highstrete C et al. Electrically resonant terahertz metamaterials: theoretical and experimental investigations[J]. Physical Review B, 75, 041102(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000006000002000085000001&idtype=cvips&gifs=Yes

    Qi Zhang, Qiang Wu, Bin Zhang, Chongpei Pan, Ride Wang, Yao Lu, Jiwei Qi, Jingjun Xu. Terahertz Integration and Spatio-Temporal Super-Resolution Imaging on LiNbO3 Chip[J]. Chinese Journal of Lasers, 2019, 46(5): 0508003
    Download Citation