• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 12, 3222 (2022)
QU Jingjing1,2,*, SU Qi3, LIU Fei3, SHEN Nairui3..., YUAN Changlai4, LIU Xiao4 and MENG Liufang4|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20220387 Cite this Article
    QU Jingjing, SU Qi, LIU Fei, SHEN Nairui, YUAN Changlai, LIU Xiao, MENG Liufang. Sintering Process Optimization and Grain Growth Mechanism of BaBiO3 Ceramic Targets[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3222 Copy Citation Text show less
    References

    [1] PARLAK M, HASHEMI T, HOGAN M J, et al. Electron beam evaporation of nickel manganite thin-film negative temperature coefficient thermistors[J]. J Mater Sci, 1998, 17: 1995-1997.

    [2] SCHMIDT R, BRINKMAN A W. Preparation and characterization of NiMn2O4 films[J]. Int J Inorg Mater, 2001, 3: 1215-1217.

    [3] HE L, LING Z Y. Electrical conduction of intrinsic grain and grain boundary in Mn—Co—Ni—O thin film thermistors: Grain size influence[J]. J Appl Phys, 2011, 110(9): 093708.

    [4] MA C, REN W, WANG L, et al. Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1-x(LaMnO3)x composite thin .lms[J]. J Eur Ceram Soc, 2016, 36(16): 4059-4064.

    [5] SHI Q, BAO S, REN W, et al. Structure, optical, and electrical properties of (Mnl.56Co0.96Ni0.48O4)1-x(LaMn0.6A10.4O3)x composite thin films[J]. Ceram Int, 2017, 43(7): 5702-5707.

    [6] QU J J, LI X Q, LIU F, et al. Microstructures and electrical properties of Mn/Co/Ni-doped BaBiO3 perovskite-type NTC ceramic systems[J]. J Mater Sci Mater Electron, 2019, 30: 4688-4695.

    [7] LUO Y, LIU X Y, LI X Q, et al. BaBiO3-doped SrTiO3-based NTC thermistors[J]. J Alloy Compd, 2007, 433: 221-224.

    [8] TALHA M, JEONG Y H, Lanthanum doping into A-sites of BaBiO3 via thin film synthesis[J]. J Korean Phys Soc, 2020, 76(3) : 215-220.

    [10] MILLIKEN G A, JOHNSON D E. Analysis of Messy Data Volume 1: Designed Experiments[M]. CRC Press, Boca Raton (USA), 2009. 101.

    [12] QU J J, LIU F, YUAN C L, et al. Effects of Bi3+ substitution for Nd3+ on microwave dielectric properties of Ca0.61(Nd1-xBix)0.26TiO3 ceramics[J]. Mater Lett, 2015, 159: 436-438.

    [13] COBLE R L. Sintering crystalline solids. I. Intermediate and final state diffusion models[J]. J Appl Phys, 1961, 32(5): 797-792.

    [14] POWERS J D, GLAESER A M. Grain boundary migration in ceramics[J]. Interface Sci, 1998, 6(1-2): 23-39.

    [15] BROOK R J. Controlled grain growth[J]. Treatise Mater Sci Technol, 1976, 9: 331-364.

    [16] MENDELSON M I. Average grain size in polycrystalline ceramics[J]. J Am Ceram Soc, 1969, 52(8): 443-446.

    [17] KOROTIN D, KUKOLEV V, KOZHEVNIKOV A, et al. Electronic correlations and crystal structure distortions in BaBiO3[J]. J Phys-Condens Mat, 2012, 24: 415603.

    [18] SHTAREV D S, SHTAREVA A V, KEVORKYANTS R, et al. Revisiting the BaBiO3 semiconductor photocatalyst: Synthesis, characterization, electronic structure, and photocatalytic activity[J]. Photochem Photobiol Sci, 2021, 20: 1147-1160.

    QU Jingjing, SU Qi, LIU Fei, SHEN Nairui, YUAN Changlai, LIU Xiao, MENG Liufang. Sintering Process Optimization and Grain Growth Mechanism of BaBiO3 Ceramic Targets[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3222
    Download Citation