• Photonics Research
  • Vol. 12, Issue 6, 1186 (2024)
Junfei Wang1, Junhui Hu1,2, Chaowen Guan1, Yuqi Hou1,3..., Zengyi Xu1, Leihao Sun1, Yue Wang4, Yuning Zhou1, Boon S. Ooi4, Jianyang Shi1,2,3, Ziwei Li1,3, Junwen Zhang1,2,3, Nan Chi1,2, Shaohua Yu2 and Chao Shen1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2Peng Cheng Laboratory, Shenzhen 518000, China
  • 3ZGC Institute of Ubiquitous-X Innovation and Applications, Beijing 100876, China
  • 4Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • show less
    DOI: 10.1364/PRJ.516829 Cite this Article Set citation alerts
    Junfei Wang, Junhui Hu, Chaowen Guan, Yuqi Hou, Zengyi Xu, Leihao Sun, Yue Wang, Yuning Zhou, Boon S. Ooi, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi, Shaohua Yu, Chao Shen, "High-speed GaN-based laser diode with modulation bandwidth exceeding 5 GHz for 20 Gbps visible light communication," Photonics Res. 12, 1186 (2024) Copy Citation Text show less
    References

    [1] N. Chi, H. Haas, M. Kavhrad. Visible light communications: demand factors, benefits and opportunities [Guest Editorial]. IEEE Wireless Commun., 22, 5-7(2015).

    [2] L. E. M. Matheus, A. B. Vieira, L. F. M. Vieira. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials, 21, 3204-3237(2019).

    [3] P. H. Pathak, X. Feng, P. Hu. Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutorials, 17, 2047-2077(2015).

    [4] A. Jovicic, J. Li, T. Richardson. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag., 51, 26-32(2013).

    [5] L. Grobe, A. Paraskevopolous, J. Hilt. High-speed visible light communication systems. IEEE Commun. Mag., 51, 60-66(2013).

    [6] N. Chi, Y. Zhou, Y. Wei. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh. Technol. Mag., 15, 93-102(2020).

    [7] Y.-F. Huang, Y.-C. Chi, H.-Y. Kao. Blue laser diode based free-space optical data transmission elevated to 18  Gbps over 16  m. Sci. Rep., 7, 10478(2017).

    [8] Y. Zhou, X. Zhu, F. Hu. Common-anode LED on a Si substrate for beyond 15  Gbit/s underwater visible light communication. Photonics Res., 7, 1019-1029(2019).

    [9] Y.-C. Chi, D.-H. Hsieh, C.-Y. Lin. Phosphorous diffuser diverged blue laser diode for indoor lighting and communication. Sci. Rep., 5, 18690(2015).

    [10] J. Hu, F. Hu, J. Jia. 46.4  Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express, 30, 4365-4373(2022).

    [11] G. Cossu, A. M. Khalid, P. Choudhury. 3.4  Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express, 20, B501-B506(2012).

    [12] H. Le Minh, D. O’Brien, G. Faulkner. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technol. Lett., 21, 1063-1065(2009).

    [13] Z. Wang, C. Yu, W.-D. Zhong. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems. Opt. Express, 20, 4564-4573(2012).

    [14] J. Wang, C. Ma, D. Li. Ultrafast and high-power green micro-LED for visible light communications. Conference on Lasers and Electro-Optics/Pacific Rim, CTuP11E_02(2022).

    [15] L. Wang, Z. Wei, C.-J. Chen. 1.3  GHz EO bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photonics Res., 9, 792-802(2021).

    [16] M. S. Islim, R. X. Ferreira, X. He. Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res., 5, A35-A43(2017).

    [17] Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Opt. Express, 23, 13051-13059(2015).

    [18] J. J. McKendry, R. P. Green, A. E. Kelly. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photonics Technol. Lett., 22, 1346-1348(2010).

    [19] S. Zhang, S. Watson, J. J. D. McKendry. 1.5  Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs. J. Lightwave Technol., 31, 1211-1216(2013).

    [20] D. Tsonev, S. Videv, H. Haas. Towards a 100  Gb/s visible light wireless access network. Opt. Express, 23, 1627-1637(2015).

    [21] C. Lee, C. Shen, C. Cozzan. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Opt. Express, 25, 17480-17487(2017).

    [22] C. Shen, O. Alkhazragi, X. Sun. Laser-based visible light communications and underwater wireless optical communications: a device perspective. Proc. SPIE, 10939, 109390E(2019).

    [23] L.-Y. Wei, C.-W. Hsu, C.-W. Chow. 20.231  Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system. Photonics Res., 6, 422-426(2018).

    [24] S. Nakamura. First III–V-nitride-based violet laser diodes. J. Cryst. Growth, 170, 11-15(1997).

    [25] S. Nakamura. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science, 281, 956-961(1998).

    [26] J. Kang, H. Wenzel, E. Freier. Continuous-wave operation of 405  nm distributed Bragg reflector laser diodes based on GaN using 10th-order surface gratings. Photonics Res., 10, 1157-1161(2022).

    [27] S. P. DenBaars, D. Feezell, K. Kelchner. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater., 61, 945-951(2013).

    [28] L. Hu, X. Ren, J. Liu. High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photonics Res., 8, 279-285(2020).

    [29] S. Yamaoka, N.-P. Diamantopoulos, H. Nishi. Directly modulated membrane lasers with 108  GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photonics, 15, 28-35(2021).

    [30] A. Dunn, C. Poyser, P. Dean. High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses. Nat. Commun., 11, 835(2020).

    [31] S. Watson, M. Tan, S. P. Najda. Visible light communications using a directly modulated 422  nm GaN laser diode. Opt. Lett., 38, 3792-3794(2013).

    [32] C. Lee, C. Zhang, D. L. Becerra. Dynamic characteristics of 410  nm semipolar (2021) III-nitride laser diodes with a modulation bandwidth of over 5 GHz. Appl. Phys. Lett., 109, 101104(2016).

    [33] S. Watson, S. Viola, G. Giuliano. High speed visible light communication using blue GaN laser diodes. Proc. SPIE, 9991, 99910A(2016).

    [34] S. P. Najda, P. Perlin, T. Suski. GaN laser diode technology for visible-light communications. Electronics, 11, 1430(2022).

    [35] Y. Mei, G.-E. Weng, B.-P. Zhang. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci. Appl., 6, e16199(2017).

    [36] L. Wang, L. Wang, C. J. Chen. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs. Laser Photonics Rev., 15, 2000406(2021).

    [37] M. Zhang, A. Bannerjee, C. S. Lee. A InGaN/GaN quantum dot green (λ = 524  nm) laser. Appl. Phys. Lett., 98, 221104(2011).

    [38] K. Lau, C. M. Gee, T. R. Chen. Signal-induced noise in fiber-optic links using directly modulated Fabry-Perot and distributed-feedback laser diodes. J. Lightwave Technol., 11, 1216-1225(1993).

    [39] T. Wang. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission. Semicond. Sci. Technol., 31, 093003(2016).

    [40] P. Gourley. Microstructured semiconductor lasers for high-speed information processing. Nature, 371, 571-577(1994).

    [41] L. A. Coldren. Diode lasers and photonic integrated circuits. Opt. Eng., 36, 616(1997).

    [42] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits(2012).

    [43] Y. Sun, K. Zhou, M. Feng. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics, 10, 595-599(2016).

    [44] J. D. Ralston, S. Weisser, I. Esquivias. Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J. Quantum Electron., 29, 1648-1659(1993).

    [45] J. Shi, Z. Xu, W. Niu. Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10  Gbps visible light communication. Photonics Res., 10, 2394-2404(2022).

    [46] W. Niu, Z. Xu, Y. Liu. Key technologies for high-speed Si-substrate LED based visible light communication. J. Lightwave Technol., 41, 3316-3331(2023).

    Junfei Wang, Junhui Hu, Chaowen Guan, Yuqi Hou, Zengyi Xu, Leihao Sun, Yue Wang, Yuning Zhou, Boon S. Ooi, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi, Shaohua Yu, Chao Shen, "High-speed GaN-based laser diode with modulation bandwidth exceeding 5 GHz for 20 Gbps visible light communication," Photonics Res. 12, 1186 (2024)
    Download Citation