• Photonics Research
  • Vol. 8, Issue 3, 414 (2020)
Xianchao Guan1,2, Qilai Zhao2, Wei Lin1,2, Tianyi Tan2..., Changsheng Yang2,4,6,*, Pengfei Ma2,7, Zhongmin Yang1,2,3,5,6 and Shanhui Xu2,3,4|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • 2State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
  • 3Guangdong Engineering Technology Research and Development Center of High-performance Fiber Laser Techniques and Equipment, Zhuhai 519031, China
  • 4Hengqin Firay Sci-Tech Company Ltd., Zhuhai 519031, China
  • 5Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou 510640, China
  • 6Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
  • 7e-mail: pengfeima_scut@163.com
  • show less
    DOI: 10.1364/PRJ.383174 Cite this Article Set citation alerts
    Xianchao Guan, Qilai Zhao, Wei Lin, Tianyi Tan, Changsheng Yang, Pengfei Ma, Zhongmin Yang, Shanhui Xu, "High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping," Photonics Res. 8, 414 (2020) Copy Citation Text show less
    References

    [1] N. W.-H. Chang, D. J. Hosken, J. Munch, D. Ottaway, P. J. Veitch. Stable, single frequency Er:YAG lasers at 1.6  μm. IEEE J. Quantum Electron., 46, 1039-1042(2010).

    [2] D. Y. Shen, J. K. Sahu, W. A. Clarkson. Highly efficient in-band pumped Er:YAG laser with 60  W of output at 1645  nm. Opt. Lett., 31, 754-756(2006).

    [3] R. C. Stoneman, R. Hartman, A. I. R. Malm, P. Gatt. Coherent laser radar using eyesafe YAG laser transmitters. Proc. SPIE, 5791, 167-174(2005).

    [4] E. Fujita, Y. Mashiko, S. Asaya, M. Musha, M. Tokirakawa. High power narrow-linewidth linearly-polarized 1610  nm Er:Yb all-fiber MOPA. Opt. Express, 24, 26255-26260(2016).

    [5] X. Guan, C. Yang, T. Qiao, W. Lin, Q. Zhao, G. Tang, G. Qian, Q. Qian, Z. Yang, S. Xu. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950  nm. Opt. Express, 26, 6817-6825(2018).

    [6] R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, S. W. Henderson. Eyesafe diffraction-limited single-frequency 1-ns pulsewidth Er:YAG laser transmitter. Proc. SPIE, 6552, 65520H(2007).

    [7] X. Yu, B. Yao, Y. Deng, X. Duan, Y. Ju, Y. Wang. A room temperature diode-pumped single frequency Er:YAG laser at 1645  nm. Laser Phys., 23, 095803(2013).

    [8] L. Zhu, C. Gao, R. Wang, Y. Zheng, M. Gao. Fiber-bulk hybrid Er:YAG laser with 1617  nm single frequency laser output. Laser Phys. Lett., 9, 674-677(2012).

    [9] C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, L. Wang. 6.1  W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator. Opt. Lett., 37, 1859-1861(2012).

    [10] Q. Ye, C. Gao, S. Wang, Q. Na, Y. Shi, Q. Wang, M. Gao, J. Zhang. Single-frequency, inject-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645  nm. Appl. Phys. B, 122, 198(2016).

    [11] Y. Zheng, C. Gao, R. Wang, M. Gao, Q. Ye. Single frequency 1645  nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470  nm laser diode. Opt. Lett., 38, 784-786(2013).

    [12] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, E. M. Dianov. Mode-locked 1.93  μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett., 33, 1336-1338(2008).

    [13] C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, S. Xu. Efficient 1.6  μm linearly-polarized single-frequency phosphate glass fiber laser. Opt. Express, 25, 29078-29085(2017).

    [14] C. Yang, X. Guan, Q. Zhao, W. Lin, C. Li, J. Gan, Q. Qian, Z. Feng, Z. Yang, S. Xu. 15  W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6  μm. Opt. Express, 26, 12863-12869(2018).

    [15] S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, W. Xu. Gain and noise characteristics of single-mode Er3+/Yb3+ co-doped phosphate glass fibers. 2nd IEEE International Nanoelectronics Conference (INEC), 633-635(2008).

    [16] G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, Z. Yang. Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers. J. Non-Cryst. Solids, 452, 82-86(2016).

    [17] C. Yang, X. Guan, Q. Zhao, B. Wu, Z. Feng, J. Gan, H. Cheng, M. Peng, Z. Yang, S. Xu. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5  μm MOPA laser. Opt. Express, 25, 13324-13331(2017).

    [18] L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, P. Zhou. 414  W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt. Lett., 42, 1-4(2017).

    [19] D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, N. Jacobson. Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers. Proc. SPIE, 5335, 140-150(2004).

    [20] C. A. Codemard, J. K. Sahu, J. Nilsson. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron., 46, 1860-1869(2010).

    [21] S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, W. Xu. Efficient fiber amplifiers based on a highly Er3+/Yb3+ codoped phosphate glass-fiber. Chin. Phys. Lett., 26, 047806(2009).

    [22] T. Liu, Z. M. Yang, S. Xu. 3-dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion. Opt. Express, 17, 235-247(2009).

    [23] K. Li, H. Deng, P. Ma, W. Lin, H. Cheng, X. Guan, C. Yang, Q. Zhao, Y. Zhang, Z. Yang, S. Xu. Polarization-maintaining single-frequency fiber laser with quadruple wavelengths at the C-band. IEEE Photon. J., 10, 1-10(2018).

    [24] M. Karásek. The design of L-band EDFA for multiwavelength applications. J. Opt. A, 3, 96-102(2001).

    [25] C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J. Quantum Electron., 30, 1817-1830(1994).

    [26] Q. Wang, N. K. Dutta. Er-Yb doped double clad fiber amplifier. Proc. SPIE, 5246, 208-215(2003).

    [27] K. Shiraki, M. Ohashi, M. Tateda. Performance of strain-free stimulated Brillouin scattering suppression fiber. J. Lightwave Technol., 14, 549-554(1996).

    [28] I. Dajani, C. Zeringue, C. Lu, C. Verigen, L. Henry, C. Robin. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power. Opt. Lett., 35, 3114-3116(2010).

    [29] Z. Wu, Q. Zhao, C. Yang, K. Zhou, W. Lin, X. Guan, C. Li, T. Tan, Z. Feng, Z. Yang, S. Xu. Simultaneously improving the linewidth and the low-frequency relative intensity noise of a single-frequency fiber laser. Appl. Phys. Express, 12, 052018(2019).

    [30] Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, S. Xu. Noise-sidebands-free and ultra-low-RIN 1.5  μm single-frequency fiber laser towards coherent optical detection. Photon. Res., 6, 326-331(2018).

    CLP Journals

    [1] Ying Wan, Jianxiang Wen, Chen Jiang, Fengzai Tang, Jing Wen, Sujuan Huang, Fufei Pang, Tingyun Wang, "Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber," Photonics Res. 9, 649 (2021)

    Xianchao Guan, Qilai Zhao, Wei Lin, Tianyi Tan, Changsheng Yang, Pengfei Ma, Zhongmin Yang, Shanhui Xu, "High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping," Photonics Res. 8, 414 (2020)
    Download Citation