• International Journal of Extreme Manufacturing
  • Vol. 3, Issue 4, 42001 (2021)
[in Chinese]1、2, [in Chinese]1、3, [in Chinese]4, and [in Chinese]1、5、6、7、*
Author Affiliations
  • 1Department of Engineering Science and Mechanics, The Pennsylvania State University, Pennsylvania, PA 16802, United States of America
  • 2James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
  • 3State Key Laboratory of Advanced Welding & Joining, Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People’s Republic of China
  • 4Department of Mechanical Engineering Technology, Pennsylvania State University-Erie, The Behrend College, Erie, PA 16563, United States of America
  • 5Department of Materials Science and Engineering, The Pennsylvania State University, Pennsylvania, PA 16802, United States of America
  • 6Department of Mechanical Engineering, The Pennsylvania State University, Pennsylvania, PA 16802, United States of America
  • 7Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, PA 16802, United States of America
  • show less
    DOI: 10.1088/2631-7990/ac1158 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Conformal manufacturing of soft deformable sensors on the curved surface[J]. International Journal of Extreme Manufacturing, 2021, 3(4): 42001 Copy Citation Text show less
    References

    [1] Ko H C, Shin G, Wang S, Stoykovich M P, Lee J W, KimDH, Ha J S,Huang Y, Hwang K CandRogers JA 2009 Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements Small 5 2703–9

    [2] McAlpine M C, Friedman R S, Jin S, Lin K H, Wang W U and Lieber C M 2003 High-performance nanowire electronics and photonics on glass and plastic substrates Nano Lett. 3 1531–5

    [3] Zhang Y, Chen Y, Huang J, Liu Y, Peng J, Chen S, Song K, Ouyang X, Cheng H and Wang X 2020 Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis Lab Chip 20 2635–45

    [4] Yi N, Cui H, Zhang L G and Cheng H 2019 Integration of biological systems with electronic-mechanical assemblies Acta Biomater. 95 91–111

    [5] XuL et al 2014 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium Nat. Commun. 5 3329

    [6] Cheng H and Yi N 2016 Dissolvable tattoo sensors: from science fiction to a viable technology Phys. Scr. 92 013001

    [7] Wang T, Ramnarayanan A and Cheng H 2018 Real time analysis of bioanalytes in healthcare, food, zoology and botany Sensors 18 5

    [8] Zhao Y, Gao S, Zhu J, Li J, Xu H, Xu K, Cheng H and Huang X 2019 Multifunctional stretchable sensors for continuous monitoring of long-term leaf physiology and microclimate ACS Omega 4 9522–30

    [9] Zhu J, Dexheimer M and Cheng H 2017 Reconfigurable systems for multifunctional electronics Npj Flex. Electron. 1 8

    [10] Dinyari R, Rim S B, Huang K, Catrysse P B and Peumans P 2008 Curving monolithic silicon for nonplanar focal plane array applications Appl. Phys. Lett. 92 091114

    [11] Kamyshny A and Magdassi S 2019 Conductive nanomaterials for 2D and 3D printed flexible electronics Chem. Soc. Rev. 48 1712–40

    [12] Meng F, Huang J and Zhao P 2019 3D-printed conformal array patch antenna using a five-axes motion printing system and flash light sintering 3D Print. Addit. Manuf. 6 118–25

    [13] Zhu J and Cheng H 2018 Recent development of flexible and stretchable antennas for bio-integrated electronics Sensors 18 4364

    [14] Xu S et al 2015 Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling Science 347 154

    [15] Kim J et al 2015 Epidermal electronics with advanced capabilities in near-field communication Small 11 906–12

    [16] Zhu J et al 2021 Stretchable wideband dipole antennas and rectennas for RF energy harvesting Mater. Today Phys. 18 100377

    [17] Zhang L, Ji H, Huang H, Yi N, Shi X, Xie S, Li Y, Ye Z, Feng P and Lin T 2020 Wearable circuits sintered at room temperature directly on the skin surface for health monitoring ACS Appl. Mater. Interfaces 12 45504–15

    [18] SeoJW,KimH,KimK,ChoiSQandLeeHJ2018 Calcium-modified silk as a biocompatible and strong adhesive for epidermal electronics Adv. Funct. Mater. 28 1800802

    [19] Yang L, Yi N, Zhu J, Cheng Z, Yin X, Zhang X, Zhu H and Cheng H 2020 Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities J. Mater. Chem. A 8 6487–500

    [20] KoGJ et al 2020 Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants NPG Asia Mater. 12 71

    [21] Yi N, Cheng Z, Li H, Yang L, Zhu J, Zheng X, Chen Y, Liu Z, Zhu H and Cheng H 2020 Stretchable, ultrasensitive, and low-temperature NO2 sensors based on MoS2@rGO nanocomposites Mater. Today Phys. 15 100265

    [22] Yi N, Shen M, Erdely D and Cheng H 2020 Stretchable gas sensors for detecting biomarkers from humans and exposed environments TRAC Trends Anal. Chem. 133 116085

    [23] Zheng X and Cheng H 2019 Flexible and stretchable metal oxide gas sensors for healthcare Sci. China Technol. Sci. 62 209–23

    [24] Sheng A A et al 2021 Micro/nanodevices for assessment and treatment in stomatology and ophthalmology Microsyst. Nanoeng. 7 11

    [25] Jang T M et al 2020 Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder Sci. Adv. 6 eabc9675

    [26] Qiu Y et al 2020 Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions Nano Energy 78 105337

    [27] Rus D and Tolley M T 2015 Design, fabrication and control of soft robots Nature 521 467–75

    [28] Norton J J, Lee D S, Lee J W, Lee W, Kwon O, Won P, Jung S Y, Cheng H, Jeong J W and Akce A 2015 Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface Proc. Natl Acad. Sci. 112 3920–5

    [29] Jang K I et al 2014 Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring Nat. Commun. 5 4779

    [30] LeeJH et al 2020 3D printed, customizable, and multifunctional smart electronic eyeglasses for wearable healthcare systems and human–machine Interfaces ACS Appl. Mater. Interfaces 12 21424–32

    [31] Jeong J W et al 2013 Materials and optimized designs for human-machine interfaces via epidermal electronics Adv. Mater. 25 6839–46

    [32] Zhang C, Peng Z, Huang C, Zhang B, Xing C, Chen H, Cheng H, Wang J and Tang S 2021 High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems Nano Energy 81 105609

    [33] Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q and Cheng H 2020 Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices Biosens. Bioelectron. 168 112569

    [34] Xu S et al 2013 Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems Nat. Commun. 4 1543

    [35] Sim K et al 2019 Three-dimensional curvy electronics created using conformal additive stamp printing Nat. Electron. 2 471–9

    [36] Sharma V, Koivikko A, Yiannacou K, Lahtonen K and Sariola V 2020 Flexible biodegradable transparent heaters based on fractal-like leaf skeletons Npj Flex. Electron. 4 1–8

    [37] Xiao T, Zhou Z, Zheng F, Zhou Y, Xu F, Zhang S, Shi Z, Mao Y and Tao T H 2020 Ultra-thin, ultra-conformal neural interfaces 2020 IEEE 33rd Int. Conf. on Micro Electro Mechanical Systems (MEMS) (IEEE) pp 419–20

    [38] Lv G, Wang H, Tong Y, Dong L, Zhao X, Zhao P, Tang Q and Liu Y 2020 Flexible, conformable organic semiconductor proximity sensor array for electronic skin Adv. Mater. Interfaces 7 2000306

    [39] Sahatiya P, Puttapati S K, Srikanth V V and Badhulika S 2016 Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate Flex. Print. Electron. 1 025006

    [40] Hyung′acheong W, Hyeb′asong J and Joon′akim J 2016 Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene Nanoscale 8 10591–7

    [41] Goldoni R, Ozkan-Aydin Y, Kim Y S, Kim J, Zavanelli N, Mahmood M, Liu B and Hammond F L III 2020 Stretchable nanocomposite sensors, nanomembrane interconnectors, and wireless electronics toward feedback–loop control of a soft earthworm robot ACS Appl. Mater. Interfaces 12 43388–97

    [42] Choi W M, Song J, Khang D Y, Jiang H, Huang Y Y and Rogers J A 2007 Biaxially stretchable “wavy” silicon nanomembranes Nano Lett. 7 1655–63

    [43] Cheng H, Wu J, Li M, Kim D H, Kim Y S, Huang Y, Kang Z, Hwang K C and Rogers J A 2011 An analytical model of strain isolation for stretchable and flexible electronics Appl. Phys. Lett. 98 061902

    [44] KimDH,AhnJH,ChoiWM,KimHS,KimTH,SongJ, Huang Y Y, Liu Z, Lu C and Rogers J A 2008 Stretchable and foldable silicon integrated circuits Science 320 507–11

    [45] Kim D H, Song J, Choi W M, Kim H S, Kim R-H, Liu Z, Huang Y Y, Hwang K C and Zhang Y W 2008 Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations Proc. Natl Acad. Sci. 105 18675–80

    [46] Fan J A, Yeo W H, Su Y, Hattori Y, Lee W, Jung S Y, Zhang Y, Liu Z, Cheng H and Falgout L 2014 Fractal design concepts for stretchable electronics Nat. Commun. 5 1–8

    [47] Jang K I, Li K, Chung H U, Xu S, Jung H N, Yang Y, Kwak J W, Jung H H, Song J and Yang C 2017 Self-assembled three dimensional network designs for soft electronics Nat. Commun. 8 1–10

    [48] Zhang K, Jung Y H, Mikael S, Seo J H, Kim M, Mi H, Zhou H, Xia Z, Zhou W and Gong S 2017 Origami silicon optoelectronics for hemispherical electronic eye systems Nat. Commun. 8 1–8

    [49] Zhang Y, Fu H, Su Y, Xu S, Cheng H, Fan J A, Hwang K C, Rogers J A and Huang Y 2013 Mechanics of ultra-stretchable self-similar serpentine interconnects Acta Mater. 61 7816–27

    [50] Takahashi T, Takei K, Gillies A G, Fearing R S and Javey A 2011 Carbon nanotube active-matrix backplanes for conformal electronics and sensors Nano Lett. 11 5408–13

    [51] LeeYK,XiZ,LeeYJ,KimYH,HaoY,ChoiH,LeeMG, Joo Y C, Kim C and Lien J M 2020 Computational wrapping: a universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices Sci. Adv. 6 eaax6212

    [52] Jang K I, Chung H U, Xu S, Lee C H, Luan H, Jeong J, Cheng H, Kim G T,Han S Y and Lee J W 2015 Soft network composite materials with deterministic and bio-inspired designs Nat. Commun. 6 1–11

    [53] Ma Q, Cheng H, Jang K I, Luan H, Hwang K C, Rogers J A, Huang Y and Zhang Y 2016 A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures J. Mech. Phys. Solids 90 179–202

    [54] Ma Z et al 2019 High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers ACS Nano 13 7578–90

    [55] Li X et al 2016 Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application Adv. Funct. Mater. 26 1322–9

    [56] KimRH et al 2011 Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates Nano Lett. 11 3881–6

    [57] Shi J et al 2016 Graphene reinforced carbon nanotube networks for wearable strain sensors Adv. Funct. Mater. 26 2078–84

    [58] Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q and Duan X 2019 Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration Science 364 1057

    [59] XuQ,QuS,MingC,QiuP,YaoQ,ZhuC,WeiTR,HeJ, Shi X and Chen L 2020 Conformal organic–inorganic semiconductor composites for flexible thermoelectrics Energy Environ. Sci. 13 511–8

    [60] Gallego-Perez D, Ferrell N J, Higuita-Castro N and Hansford D J 2010 Versatile methods for the fabrication of polyvinylidene fluoride microstructures Biomed. Microdevices 12 1009–17

    [61] Chen X, Li X, Shao J, An N, Tian H, Wang C, Han T, Wang L and Lu B 2017 High-performance piezoelectric nanogenerators with imprinted P (VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors Small 13 1604245

    [62] Alexe M, Harnagea C, Hesse D and G.sele U 1999 Patterning and switching of nanosize ferroelectric memory cells Appl. Phys. Lett. 75 1793–5

    [63] Yu Q, Yu X, Zhou H, Chen F, Cheng H and Wu H 2019 Effects of material properties and geometric parameters on electromagnetic-assisted transfer printing J. Phys. D: Appl. Phys. 52 255302

    [64] Lee W, Liu Y, Lee Y, Sharma B K, Shinde S M, Kim S D, Nan K, Yan Z, Han M and Huang Y 2018 Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging Nat. Commun. 9 1–9

    [65] Bandodkar A J et al 2019 Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat Sci. Adv. 5 eaav3294

    [66] Kim Y, Yuk H, Zhao R, Chester S A and Zhao X 2018 Printing ferromagnetic domains for untethered fast-transforming soft materials Nature 558 274–9

    [67] Deng D, Kwok T H and Chen Y 2017 Four-dimensional printing: design and fabrication of smooth curved surface using controlled self-folding J. Mech. Des. 139 081702

    [68] Huang Y, Wu H, Xiao L, Duan Y, Zhu H, Bian J, Ye D and Yin Z 2019 Assembly and applications of 3D conformal electronics on curvilinear surfaces Mater. Horiz. 6 642–83

    [69] JoY,ParkHJ,KimYB,LeeSS,LeeSY,KimSK,ChoiY and Jeong S 2020 Form-factor free 3D copper circuits by surface-conformal direct printing and laser writing Adv. Funct. Mater. 30 2004659

    [70] Giannakou P, Tas M O, Le Borgne B and Shkunov M 2020 Water-transferred, inkjet-printed supercapacitors toward conformal and epidermal energy storage ACS Appl. Mater. Interfaces 12 8456–65

    [71] Paulsen J A, Renn M, Christenson K and Plourde R 2012 Printing conformal electronics on 3D structures with Aerosol Jet technology 2012 Future of Instrumentation Int. Workshop (FIIW) Proc. (IEEE) pp 1–4

    [72] Wang Y et al 2020 Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale Sci. Adv. 6 eabd0996

    [73] Yi H, Seong M, Sun K, Hwang I, Lee K, Cha C, Kim T I and Jeong H E 2018 Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes Adv. Funct. Mater. 28 1706498

    [74] Harnois M, Himdi M, Yong W Y, Rahim S K A, Tekkouk K and Cheval N 2020 An improved fabrication technique for the 3D frequency selective surface based on water transfer printing technology Sci. Rep. 10 1714

    [75] Li Z, Huang J, Yang Y, Yang S, Zhang J, Yuan P and Zhang J 2020 Additive manufacturing of conformal microstrip antenna using piezoelectric nozzle array Appl. Sci. 10 3082

    [76] Zhu Z, Guo S Z, Hirdler T, Eide C, Fan X, Tolar J and McAlpine M C 2018 3D printed functional and biological materials on moving freeform surfaces Adv. Mater. 30 e1707495

    [77] Zhang J, Ye S, Liu H, Chen X, Chen X, Li B, Tang W, Meng Q, Ding P and Tian H 2020 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors Nano Energy 77 105300

    [78] Gao Y and Cheng H 2017 Assembly of heterogeneous materials for biology and electronics: from bio-inspiration to bio-integration J. Electron. Packaging 139 020801

    [79] Carlson A, Bowen A M, Huang Y, Nuzzo R G and Rogers J A 2012 Transfer printing techniques for materials assembly and micro/nanodevice fabrication Adv. Mater. 24 5284–318

    [80] Zhou H, Qin W, Yu Q, Cheng H, Yu X and Wu H 2019 Transfer printing and its applications in flexible electronic devices Nanomaterials 9 283

    [81] Cheng H, Li M, Wu J, Carlson A, Kim S, Huang Y, Kang Z, Hwang K C, Rogers J A and Viscoelastic A 2013 Model for the rate effect in transfer printing J. Appl.Mech. 80 041019

    [82] Feng X, Cheng H, Bowen A M, Carlson A W, Nuzzo R G and Rogers J A 2013 A finite-deformation mechanics theory for kinetically controlled transfer printing J. Appl. Mech. 80 061023

    [83] Luo H, Wang C, Linghu C, Yu K, Wang C and Song J 2020 Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp Natl Sci. Rev. 7 296–304

    [84] Yan Z et al 2017 Thermal release transfer printing for stretchable conformal bioelectronics Adv. Sci. 4 1700251

    [85] Wang C et al 2020 Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics Sci. Adv. 6 eabb2393

    [86] Lee C H, Kim D R and Zheng X 2011 Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method Nano Lett. 11 3435–9

    [87] ZhaoJ,GuoY,CaiL,LiH,WangKX,ChoIS,LeeCH, Fan S and Zheng X 2016 High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting ACS Energy Lett. 1 68–75

    [88] Kim S, Carlson A, Cheng H, Lee S, Park J-K, Huang Y and Rogers J A 2012 Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing Appl. Phys. Lett. 100 171909

    [89] Yang S Y et al 2012 Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications Adv. Mater. 24 2117–22

    [90] Kim S et al 2010 Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing Proc. Natl Acad. Sci. 107 17095

    [91] Carlson A et al 2011 Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly Appl. Phys. Lett. 98 264104

    [92] Cheng H, Wu J, Yu Q, Kim-Lee H J, Carlson A, Turner K T, Hwang K C, Huang Y and Rogers J A 2012 An analytical model for shear-enhanced adhesiveless transfer printing Mech. Res. Commun. 43 46–9

    [93] Yu Q, Chen F, Zhou H, Yu X, Cheng H and Wu H 2018 Design and analysis of magnetic-assisted transfer printing J. Appl. Mech. 85 101009

    [94] Linghu C, Zhang S, Wang C, Yu K, Li C, Zeng Y, Zhu H, Jin X, You Z and Song J 2020 Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects Sci. Adv. 6 eaay5120

    [95] Xue Y, Zhang Y, Feng X, Kim S, Rogers J A and Huang Y 2015 A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing J. Mech. Phys. Solids 77 27–42

    [96] Eisenhaure J D, Xie T, Varghese S and Kim S 2013 Microstructured shape memory polymer surfaces with reversible dry adhesion ACS Appl. Mater. Interfaces 5 7714–7

    [97] Park S I et al 2009 Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays Science 325 977–81

    [98] Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G and Rogers J A 2006 Transfer printing by kinetic control of adhesion to an elastomeric stamp Nat. Mater. 5 33–8

    [99] Chen Y, Shu Z, Feng Z and Kong L A 2020 Reliable Patterning, Transfer Printing and Post-Assembly of Multiscale Adhesion-Free Metallic Structures for Nanogap Device Applications Adv. Funct. Mater. 30 2002549

    [100] Zhao Q, Wang W, Shao J, Li X, Tian H, Liu L, Mei X, Ding Y and Lu B 2016 Nanoscale electrodes for flexible electronics by swelling controlled cracking Adv. Mater. 28 6337–44

    [101] Chen Y, Xiang Q, Li Z, Wang Y, Meng Y and Duan H 2016 “Sketch and Peel” lithography for high-resolution multiscale patterning Nano Lett. 16 3253–9

    [102] Humood M, Shi Y, Han M, Lefebvre J, Yan Z, Pharr M, Zhang Y, Huang Y, Rogers J A and Polycarpou A A 2018 Fabrication and deformation of 3D multilayered kirigami microstructures Small 14 e1703852

    [103] Cho H, Wu G, Christopher Jolly J, Fortoul N, He Z, Gao Y, Jagota A and Yang S 2019 Intrinsically reversible superglues via shape adaptation inspired by snail epiphragm Proc. Natl Acad. Sci. USA 116 13774–9

    [104] Tao H et al 2012 Silk-based conformal, adhesive, edible food sensors Adv. Mater. 24 1067–72

    [105] Liang F C, Chang Y W, Kuo C C, Cho C J, Jiang D H, Jhuang F C, Rwei S P, Borsali R and Mechanically Robust A 2018 Silver nanowire–polydimethylsiloxane electrode based on facile transfer printing techniques for wearable displays Nanoscale 11 1520–30

    [106] Le Borgne B, De Sagazan O, Crand S, Jacques E and Harnois M 2017 Conformal electronics wrapped around daily life objects using an original method: water transfer printing ACS Appl. Mater. Interfaces 9 29424–9

    [107] KoHC et al 2008 A hemispherical electronic eye camera based on compressible silicon optoelectronics Nature 454 748–53

    [108] Yoon S, Choi K, Baek S and Chang H 2011 Electronic circuit patterning on curved surface by direct laser structuring 2011 Int. Conf. on Electrical Machines and Systems 20-23 Aug 2011pp 1–3

    [109] Ahn B Y, Duoss E B, Motala M J, Guo X, Park S I, Xiong Y, Yoon J, Nuzzo R G, Rogers J A and Lewis J A 2009 Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes Science 323 1590–3

    [110] Adams J J, Duoss E B, Malkowski T F, Motala M J, Ahn B Y, Nuzzo R G, Bernhard J T and Lewis J A 2011 Conformal printing of electrically small antennas on three-dimensional surfaces Adv. Mater. 23 1335–40

    [111] Zhou N, Liu C, Lewis J A and Ham D 2017 Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications Adv. Mater. 29 1605198

    [112] Ghazy M M S A 2012 Development of an Additive Manufacturing Decision Support System (AMDSS) (University of Newcastle Upon Tyne) (available at: http://theses.ncl.ac.uk/jspui/handle/10443/1692)

    [113] Ian Gibson I G 2015 Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Berlin: Springer) (https://doi.org/10.1007/978-1-4939-2113-3)

    [114] Cormier D, Harrysson O and West H 2004 Characterization of H13 steel produced via electron beam melting Rapid Prototyping J. 10 35–41

    [115] Saeidi-Javash M, Kuang W, Dun C and Zhang Y 2019 3D conformal printing and photonic sintering of high-performance flexible thermoelectric films using 2D nanoplates Adv. Funct. Mater. 29 1901930

    [116] Pammi S V N, Jella V, Choi J S and Yoon S G 2017 Enhanced thermoelectric properties of flexible Cu2.xSe (x . 0.25) NW/polyvinylidene fluoride composite films fabricated via simple mechanical pressing J. Mater. Chem. C 5 763–9

    [117] Lin Z et al 2017 High-performance thermoelectric copper selenide thin film Adv. Mater. 29 1606662

    [118] Du Y, Xu J, Paul B and Eklund P 2018 Flexible thermoelectric materials and devices Appl. Mater. Today 12 366–88

    [119] Devaraj H and Malhotra R 2019 Scalable Forming and flash light sintering of polymer-supported interconnects for surface-conformal electronics J. Manuf. Sci. Eng. 141 041014

    [120] Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J and Zhang Y 2016 High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals Sci. Rep. 6 33135

    [121] Madan D, Wang Z, Chen A and Juang R C 2012 Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators ACS Appl. Mater. Interfaces 4 6117–24

    [122] Liu J, Xiao L, Rao Z, Dong B, Yin Z and Huang Y 2018 High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices Adv. Mater. Technol. 3 1800155

    [123] Ding Y, Zhu C, Liu J, Duan Y, Yi Z, Xiao J, Wang S, Huang Y and Yin Z 2017 Flexible small-channel thin-film transistors by electrohydrodynamic lithography Nanoscale 9 19050–7

    [124] Toriz-Garcia J J, Cowling J J, Williams G L, Bai Q, Seed N L, Tennant A, McWilliam R, Purvis A, Soulard F B and Ivey P A 2013 Fabrication of a 3D electrically small antenna using holographic photolithography J. Micromech. Microeng. 23 055010

    [125] NgLWT,ZhuX,HuG,MacadamN,UmD,WuTC,Le Moal F, Jones C and Hasan T 2019 Conformal printing of graphene for single-and multilayered devices onto arbitrarily shaped 3D surfaces Adv. Funct. Mater. 29 1807933

    [126] Guo S Z, Qiu K, Meng F, Park S H and McAlpine M C 2017 3D printed stretchable tactile sensors Adv. Mater. 29 1701218

    [127] Singh M et al 2017 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs Lab Chip 17 2561–71

    [128] Zhu Z, Park H S and McAlpine M C 2020 3D printed deformable sensors Sci. Adv. 6 eaba5575

    [129] Vatani M, Engeberg E D and Choi J W 2015 Conformal direct-print of piezoresistive polymer/nanocomposites for compliant multi-layer tactile sensors Addit. Manuf. 7 73–82

    [130] Vatani M, Engeberg E D and Choi J W 2013 Hybrid additive manufacturing of 3D compliant tactile sensors ASME Int. Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers) p V02AT02A004

    [131] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Graphene and graphene oxide: synthesis, properties, and applications Adv. Mater. 22 3906–24

    [132] Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R and Yang T 2017 The physics and chemistry of graphene-on-surfaces Chem. Soc. Rev. 46 4417–49

    [133] Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J B and Zhu H 2017 Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics Appl. Phys. Rev. 4 021306

    [134] Xu W, Huang Y, Zhao X, Jiang X, Yang T and Zhu H 2021 Patterning of graphene for highly sensitive strain sensing on various curved surfaces Nano Sel. 2 121– 8

    [135] Lee H, Dellatore S M, Miller W M and Messersmith P B 2007 Mussel-inspired surface chemistry for multifunctional coatings Science 318 426

    [136] Simakov A B and Webster J G 2010 Motion artifact from electrodes and cables Iran. J. Electr. Comput. Eng. (IJECE) 9 139–43

    [137] Ershad F et al 2020 Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment Nat. Commun. 11 3823

    [138] Li X, Hui H and Sun Y 2016 Investigation of motion artifacts for biopotential measurement in wearable devices 2016 IEEE 13th Int. Conf. on Wearable and Implantable Body Sensor Networks (BSN) (14–17 June 2016) pp 218–23

    [139] Xu Y et al 2020 Pencil-paper on-skin electronics Proc. Natl Acad. Sci. USA 117 18292–301

    [140] Yang Z, Zhang Y, Itoh T and Maeda R 2013 Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications J. Microelectromech. Syst. 23 21–9

    [141] Lee J, Kim S, Lee J, Yang D, Park B C, Ryu S and Park I 2014 A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection Nanoscale 6 11932–9

    [142] WangCT,HuangKY,LinDT,LiaoWC,LinHWand Hu Y C 2010 A flexible proximity sensor fully fabricated by inkjet printing Sensors 10 5054–62

    [143] Nothnagle C, Baptist J R, Sanford J, Lee W H, Popa D O and Wijesundara M B 2015 EHD printing of PEDOT: PSS inks for fabricating pressure and strain sensor arrays on flexible substrates Next-Generation Robotics II; and Machine Intelligence and Bio-inspired Computation: Theory and Applications IX (International Society for Optics and Photonics) p 949403

    [144] Dankoco M, Tesfay G, Bènevent E and Bendahan M 2016 Temperature sensor realized by inkjet printing process on flexible substrate Mater. Sci. Eng. B 205 1–5

    [145] Cai L, Zhang S, Zhang Y, Li J, Miao J, Wang Q, Yu Z and Wang C 2018 Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications Adv. Mater. Technol. 3 1700232

    [146] Huang L, Huang Y, Liang J, Wan X and Chen Y 2011 Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors Nano Res. 4 675–84

    [147] Vogiatzis P, Ma M, Chen S and Gu X D 2018 Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping Comput. Methods Appl. Mech. Eng. 328 477–97

    [148] Ogurtsov S, Koziel S and Conformal Circularly A 2020 Polarized series-fed microstrip antenna array design IEEE Trans. Antennas Propag. 68 873–81

    [149] Liang X, Li H, Dou J, Wang Q, He W, Wang C, Li D, Lin J M and Zhang Y 2020 Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics Adv. Mater. 32 2000165

    [150] Chiou K and Huang J 2020 Cresol-carbon nanotube charge-transfer complex: stability in common solvents and implications for solution processing Matter 3 302–19

    [151] Yu Z and Cheng H 2018 Tunable adhesion for bio-integrated devices Micromachines 9 529

    [152] Cheng H and Wang S 2013 Mechanics of interfacial delamination in epidermal electronics systems J. Appl. Mech. 81 044501

    [153] Pang C, Koo J H, Nguyen A, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H and Bao Z 2015 Highly skin-conformal microhairy sensor for pulse signal amplification Adv. Mater. 27 634–40

    [154] Hwang S W et al 2012 Form of silicon electronics Science 337 1640

    [155] Kang S K et al 2016 Bioresorbable silicon electronic sensors for the brain Nature 530 71–76

    [156] Cheng H 2016 Inorganic dissolvable electronics: materials and devices for biomedicine and environment J. Mater. Res. 31 2549–70

    [157] Cheng H and Vepachedu V 2016 Recent development of transient electronics Theor. Appl. Mech. Lett. 6 21–31

    [158] Li R et al 2013 An analytical model of reactive diffusion for transient electronics Adv. Funct. Mater. 23 3106–14

    [159] Hwang S W et al 2015 Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors Nano Lett. 15 2801–8

    [160] Dagdeviren C, Hwang S W, Su Y, Kim S, Cheng H, Gur O, Haney R, Omenetto F G, Huang Y and Rogers J A 2013 Transient, biocompatible electronics and energy harvesters based on ZnO Small 9 3398–404

    [161] Hwang S W et al 2014 25th anniversary article: materials for high-performance biodegradable semiconductor devices Adv. Mater. 26 1992–2000

    [162] Hwang S W et al 2014 Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics ACS Nano 8 5843–51

    [163] Kang S K et al 2015 Dissolution chemistry and biocompatibility of silicon-and germanium-based semiconductors for transient electronics ACS Appl. Mater. Interfaces 7 9297–305

    [164] Yin L et al 2014 Dissolvable metals for transient electronics Adv. Funct. Mater. 24 645–58

    [165] Kang S K, Hwang S W, Cheng H, Yu S, Kim B H, Kim J H, Huang Y and Rogers J A 2014 Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics Adv. Funct. Mater. 24 4427–34

    [166] Yi N, Cheng Z, Yang L, Edelman G, Xue C, Ma Y, Zhu H and Cheng H 2018 Fully water-soluble, high-performance transient sensors on a versatile galactomannan substrate derived from the endosperm ACS Appl. Mater. Interfaces 10 36664–74

    [167] Hwang S W, Song J K, Huang X, Cheng H, Kang S K, Kim B H, Kim J H, Yu S, Huang Y and Rogers J A 2014 High-performance biodegradable/transient electronics on biodegradable polymers Adv. Mater. 26 3905–11

    [168] Brenckle M A, Cheng H, Hwang S, Tao H, Paquette M, Kaplan D L, Rogers J A, Huang Y and Omenetto F G 2015 Modulated degradation of transient electronic devices through multilayer silk fibroin pockets ACS Appl. Mater. Interfaces 7 19870–5

    [169] Koo J et al 2018 Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy Nat. Med. 24 1830–6

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Conformal manufacturing of soft deformable sensors on the curved surface[J]. International Journal of Extreme Manufacturing, 2021, 3(4): 42001
    Download Citation