[3] Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials[J].Nature Nanotechnology,2014,9(10):768-779.
[4] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J].Nature Reviews Materials,2017,2(8):17033.
[6] Duan X D, Wang C, Pan A, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges[J].Chemistry Society Review,2015,44(24):8859-8876.
[7] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J].Nature Photonics,2016,10(4):216-226.
[8] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J].Nature Nanotechnology, 2011,6(3):147-150.
[9] Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials[J].Nano Letters,2013,13(8):3664-3670.
[10] Tan H J, Fan Y, Zhou Y Q, et al. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes[J].ACS Nano,2016,10(8):7866-7873.
[12] Huo N, Yang S, Wei Z, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes[J].Scientific Reports,2014,4(1):5209.
[13] Gong Y, Carozo V, Li H, et al. High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide[J].2D Materials,2016,3(2):021008.
[14] Lv W, Xiang J, Wen F, et al. Chemical vapor synthesized WS2-embedded polystyrene-derived porous carbon as superior long-term cycling life anode material for Li-ion batteries[J].Electrochimica Acta,2015,153(1):49-54.
[15] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J].Nature Chemistry,2013,5(4):263-275.
[16] Jung G, Yoo S, Park Q, et al. Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions[J].Nanophotonics,2019,8(2):263-270.
[17] Li H, Qin M, Wang L, et al. Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling[J].Optics Express,2017,25(25):31612-31621.
[18] Hsu C, Frisenda R, Schmidt R, et al. Thickness-dependent refractive index of 1L, 2L, and 3L Mo2, MoSe2, WS2, and WSe2[J].Advanced Optical Materials,2019,7(13):1900239.
[19] Cao J, Yang G, Wang J, et al. Enhanced optical absorption of monolayer WS2 using Ag nanograting and distributed Bragg reflector structures[J].Superlattices and Microstructures,2017,112:218-223.
[20] Butun S, Palacios E, Cain J D, et al. Quantifying plasmon-enhanced light absorption in monolayer WS2 films[J].ACS Applied Materials & Interfaces, 2017,9(17):15044-15051.
[21] Jariwala D, Davoyan A R, Tagliabue G, et al. Near-unity absorption in van der Waals semiconductors for ultrathin optoelectronics[J].Nano Letters,2016,16(9):5482-5487.
[22] Ansari N, Ghorbani F. Light absorption optimization in two-dimensional transition metal dichalcogenide van der Waals heterostructures[J].Journal of the Optical Society of America B, 2018,35(5):1179-1185.
[23] Wang G C, Li L, Fan W H, et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance[J].Advanced Functional Materials,2018,28(22):1800339.
[24] Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer[J].Nature Communications,2016,7(1):13328.
[25] Yang H, Darchangel J, Sundheimer M L, et al. Optical dielectric function of silver[J].Physical Review B,2015,91(23):235137.
[26] Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference[J].Applied Optics,2002,41(19):3978-3987.