• Acta Photonica Sinica
  • Vol. 53, Issue 8, 0810003 (2024)
Fupei WU, Yuhao LIU, Rui WANG, and Shengping LI*
Author Affiliations
  • Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
  • show less
    DOI: 10.3788/gzxb20245308.0810003 Cite this Article
    Fupei WU, Yuhao LIU, Rui WANG, Shengping LI. Dynamic Weight Cost Aggregation Algorithm for Stereo Matching Based on Adaptive Window[J]. Acta Photonica Sinica, 2024, 53(8): 0810003 Copy Citation Text show less
    The adaptive cross domain
    Fig. 1. The adaptive cross domain
    The construction of adaptive window diagram
    Fig. 2. The construction of adaptive window diagram
    The two-pass cost aggregation diagram
    Fig. 3. The two-pass cost aggregation diagram
    The neighborhood window of invalid pixel
    Fig. 4. The neighborhood window of invalid pixel
    Result of SLIC algorithm
    Fig. 5. Result of SLIC algorithm
    Influence of α and β on error matching rate of disparity images
    Fig. 6. Influence of α and β on error matching rate of disparity images
    Results of disparity optimization
    Fig. 7. Results of disparity optimization
    Experimental results
    Fig. 8. Experimental results
    Experimental results of proposed algorithm on Middlebury image pairs
    Fig. 9. Experimental results of proposed algorithm on Middlebury image pairs
    The acquired image and the experimental platform
    Fig. 10. The acquired image and the experimental platform
    The flowchart of image processing
    Fig. 11. The flowchart of image processing
    Comparisons of three-dimensional reconstruction results
    Fig. 12. Comparisons of three-dimensional reconstruction results
    The reconstruction results of four surface types using different algorithms
    Fig. 13. The reconstruction results of four surface types using different algorithms
    ParameterValueParameterValue
    λAD10λCensus30
    τ115a100
    τ226δ20
    L150α4
    L225β11
    τS20τH0.4
    Table 1. Experimental parameter settings
    AlgorithmTeddyBaby1Cloth3Wood2Average
    n-occalln-occalln-occalln-occall
    Mei's aggregation5.918.846.547.583.183.966.887.936.35
    Proposed algorithm4.937.084.786.882.633.011.832.544.21
    Table 2. Average error matching rate in non-occlusion region and all region(%)
    AlgorithmTeddyBaby1Baby2Baby3FlowerpotsAverage
    n-occalln-occalln-occalln-occalln-occalln-occall
    LSECVR4.9116.085.128.806.619.797.6114.4814.6619.837.7813.80
    GF5.779.626.539.787.9710.535.708.5810.6414.417.3210.58
    Semiglob6.2512.367.3610.989.4114.987.1310.3312.7717.348.5813.20
    AD-Census4.937.084.786.887.338.136.858.979.1212.886.608.79
    Patchmatch3.565.035.386.536.237.866.447.018.5610.686.037.42
    Proposed algorithm2.523.163.864.984.126.083.435.266.638.794.125.65
    Table 3. Error matching rates of different algorithms in non-occlusion region and all region (%)
    AlgorithmLSECVRGFSemiglobAD-CensusPatchmatchProposed
    Execute time/s1.571.960.981.5630.842.53
    Table 4. Execute time of six algorithms (s)
    Parameter matrixLeft cameraRight camera
    Inner parameter matrix17910632.801791453.500117920643.301792512.6001
    Distortion coefficient-0.140-0.135002.511-0.136-0.389005.813
    Rotation matrix0.981 5-0.015 40.190 90.014 60.999 90.005 6-0.191 0-0.002 70.981 6
    Translation vector-48.20-0.78811.26
    Table 5. Camera parameters
    Convex surfaceStep surfaceAngular surfaceConcave surface
    Sampleimage
    Acquireimage
    Reconstructionimage
    Table 6. Experimental results of three-dimensional reconstruction
    NameActual length/mmMeasure length/mmError/mmError rate/%
    Convex surface1615.873 2-0.126 8-0.793
    87.974 4-0.025 6-0.320
    Step surface2525.299 80.299 81.199
    109.954 3-0.045 7-0.457
    Angular surface1616.157 50.157 50.984
    88.047 70.047 70.596
    Concave surface2019.836 9-0.163 1-0.815
    109.962 4-0.037 6-0.376
    Table 7. Error measuring rates of sample in length
    NameMaximum error/mmAverage error/mmAverage absolute error/mmSD error/mm
    Convex surface0.233 40.081 20.112 30.098 1
    Step surface0.144 8-0.100 40.061 30.066 1
    Angular surface0.221 7-0.007 40.036 80.051 8
    Concave surface0.336 3-0.054 10.103 50.091 7
    Ave0.234 1-0.020 20.078 50.076 9
    Table 8. Error measuring rates of sample in height
    Fupei WU, Yuhao LIU, Rui WANG, Shengping LI. Dynamic Weight Cost Aggregation Algorithm for Stereo Matching Based on Adaptive Window[J]. Acta Photonica Sinica, 2024, 53(8): 0810003
    Download Citation