• Matter and Radiation at Extremes
  • Vol. 9, Issue 5, 057403 (2024)
Huan Zhang1,*, Yutong Yang2,3, Weimin Yang1, Zanyang Guan1..., Xiaoxi Duan1, Mengsheng Yang1, Yonggang Liu1, Jingxiang Shen3, Katarzyna Batani4, Diluka Singappuli5, Ke Lan6, Yongsheng Li6, Wenyi Huo6, Hao Liu1,6, Yulong Li1, Dong Yang1, Sanwei Li1, Zhebin Wang1, Jiamin Yang1, Zongqing Zhao1, Weiyan Zhang3, Liang Sun1, Wei Kang3 and Dimitri Batani5|Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Plasma Physics, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 2HEDPS, Center for Applied Physics and Technology, and College of Physics, Peking University, Beijing 100871, China
  • 3HEDPS, Center for Applied Physics and Technology, and School of Engineering, Peking University, Beijing 100871, China
  • 4Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warszawa, Poland
  • 5Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
  • 6Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • show less
    DOI: 10.1063/5.0206889 Cite this Article
    Huan Zhang, Yutong Yang, Weimin Yang, Zanyang Guan, Xiaoxi Duan, Mengsheng Yang, Yonggang Liu, Jingxiang Shen, Katarzyna Batani, Diluka Singappuli, Ke Lan, Yongsheng Li, Wenyi Huo, Hao Liu, Yulong Li, Dong Yang, Sanwei Li, Zhebin Wang, Jiamin Yang, Zongqing Zhao, Weiyan Zhang, Liang Sun, Wei Kang, Dimitri Batani. Equation of state for boron nitride along the principal Hugoniot to 16 Mbar[J]. Matter and Radiation at Extremes, 2024, 9(5): 057403 Copy Citation Text show less
    References

    [1] A. M.Boesgaard, C. P.Deliyannis, D. K.Duncan, F.Primas, L. M.Rebullet?al.. The evolution of galactic boron and the production site of the light elements. Astrophys. J., 488, 338(1997).

    [2] A.Aprahamian, J. J.Cowan, J. E.Lawler, C.Sneden, M.Wiescheret?al.. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys., 93, 015002(2021).

    [3] A. M.Boesgaard, A.McWilliam, and A.McWilliam, M.Rauch. The light elements lithium, beryllium and boron. Origin and Evolution of the Elements, 117(2004).

    [4] A.Bacher, D. T.Casey, M.Gatu Johnson, M.Hohenberger, A. B.Zylstraet?al.. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments. Phys. Plasmas, 25, 056303(2018).

    [5] A.Bacher, C. R.Brune, D. T.Casey, M.Gatu Johnson, A. B.Zylstraet?al.. Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics. Phys. Plasmas, 24, 041407(2017).

    [6] D.Batani, F.Belloni, D.Margarone. Advances in the study of laser-driven proton–boron fusion. Laser Part. Beams, 2023, e5.

    [7] J.-Q.Dong, K.-M.Feng, M.-S.Liu, Y.-M.Wang, H.-S.Xie et al. ENN’s roadmap for proton-boron fusion based on spherical torus. Phys. Plasmas, 31, 062507(2024).

    [8] I.Allfrey, H.Gota, R. M.Magee, K.Ogawa, T.Tajimaet?al.. First measurements of p11B fusion in a magnetically confined plasma. Nat. Commun., 14, 955(2023).

    [9] D.Batani, K.Batani, X. T.He, K.Shigemori. Recent progress in matter in extreme states created by laser. Matter Radiat. Extremes, 7, 013001(2021).

    [10] B.Chen, H.Gou, K.Li, J.Liu, H.-K.Maoet?al.. 2022 HP special volume: Interdisciplinary high pressure science and technology. Matter Radiat. Extremes, 8, 063001(2023).

    [11] H.-K.Mao. Hydrogen and related matter in the pressure dimension. Matter Radiat. Extremes, 7, 063001(2022).

    [12] M. L.Cohen, R.Jeanloz, E.Knittle, R. M.Wentzcovitch. Experimental and theoretical equation of state of cubic boron nitride. Nature, 337, 349-352(1989).

    [13] J. C.Crowhurst, J. K.Dewhurst, A. F.Goncharov, C.Sanloup, S.Sharmaet?al.. Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale. Phys. Rev. B, 75, 224114(2007).

    [14] D.Häusermann, M.Kunz, M.Mezouar, V. L.Solozhenko. Equation of state of wurtzitic boron nitride to 66 GPa. Appl. Phys. Lett., 72, 1691-1693(1998).

    [15]

    [16] S. P.Marsh. LASL Shock Hugoniot Data(1980).

    [17] L.Hao, D.Kang, H.Shen, C.Wu, H.Zhanget?al.. Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion. Matter Radiat. Extremes, 9, 015601(2023).

    [18] H.Cao, Y.-H.Chen, S.Li, Z.Li, K.Panet?al.. Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums. Matter Radiat. Extremes, 7, 065901(2022).

    [19] D.Batani, A.Colaïtis, A.Tentori. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I. Matter Radiat. Extremes, 7, 065902(2022).

    [20] B. E.Blue, G. E.Kemp, Z. B.Walters, H. D.Whitley, C. B.Yeamanset?al.. Comparison of ablators for the polar direct drive exploding pusher platform. High Energy Density Phys., 38, 100928(2021).

    [21] G. M.Hale, A. C.Hayes-Sterbenz, G.Jungman, M. W.Paris. Probing the Physics of Burning DT Capsules Using Gamma-Ray Diagnostics(2015).

    [22] H.Abu-Shawarebet?al.. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001(2022).

    [23] K.Caspersen, A.Lazicki, B.Militzer, L. H.Yang, S.Zhanget?al.. Equation of state of boron nitride combining computation, modeling, and experiment. Phys. Rev. B, 99, 165103(2019).

    [24] K.Caspersen, M. C.Gregor, B.Militzer, L. H.Yang, S.Zhanget?al.. Theoretical and experimental investigation of the equation of state of boron plasmas. Phys. Rev. E, 98, 023205(2018).

    [25] D. G.Braun, P. M.Celliers, D. E.Fratanduono, S.Hamel, P. A.Sterneet?al.. Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa. Phys. Rev. B, 94, 184107(2016).

    [26] M. C.Marshall, B.Militzer, P. A.Sterne, L. H.Yang, S.Zhanget?al.. Benchmarking boron carbide equation of state using computation and experiment. Phys. Rev. E, 102, 053203(2020).

    [27] W.Isaacs, V.Sonnad, P.Sterne, B.Wilson. Purgatorio—A new implementation of the Inferno algorithm. J. Quant. Spectrosc. Radiat. Transfer, 99, 658-679(2006).

    [28] T.Gong, L.Hao, S.Li, Z.Li, D.Yanget?al.. Recent research progress of laser plasma interactions in Shenguang laser facilities. Matter Radiat. Extremes, 4, 055202(2019).

    [29] K.Lan. Dream fusion in octahedral spherical hohlraum. Matter Radiat. Extremes, 7, 055701(2022).

    [30] T.Huang, X.Jiang, Z.Li, S.Liu, J.Zhenget?al.. A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV. Rev. Sci. Instrum., 81, 073504(2010).

    [31] X.Jiang, Z.Li, S.Liu, J.Zheng, X.Zhuet?al.. Note: Continuing improvements on the novel flat-response x-ray detector. Rev. Sci. Instrum., 82, 106106(2011).

    [32] X.Duan, S.Jiang, W.Liu, L.Sun, Z.Wanget?al.. Laser-driven shock compression of gold foam in the terapascal pressure range. Phys. Plasmas, 25, 062707(2018).

    [33] X.Duan, S.Jiang, P.Wang, C.Zhang, H.Zhanget?al.. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF. Matter Radiat. Extremes, 6, 035902(2021).

    [34] P. M.Celliers, G. W.Collins, D. E.Fratanduono, D. H.Munro. Hugoniot experiments with unsteady waves. J. Appl. Phys., 116, 033517(2014).

    [35] P. M.Celliers, M.Millot. Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences. Rev. Sci. Instrum., 94, 011101(2023).

    [36] M. D.Cable, C. A.Clower, B. A.Hammel, V. P.Karpenko, J. D.Kilkennyet?al.. Diagnostic systems for the national ignition facility (NIF) (invited). Rev. Sci. Instrum., 66, 288-295(1995).

    [37] Y.Ding, S.Jiang, S.Liu, F.Wang, J.Yanget?al.. Recent diagnostic developments at the 100 kJ-level laser facility in China. Matter Radiat. Extremes, 5, 035201(2020).

    [38] T. R.Boehly, P. M.Celliers, A.Melchior, D. D.Meyerhofer, J. E.Milleret?al.. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. Rev. Sci. Instrum., 78, 034903(2007).

    [39] T. R.Boehly, P. M.Celliers, J. H.Eggert, D. G.Hicks, E.Vianelloet?al.. Shock compression of quartz in the high-pressure fluid regime. Phys. Plasmas, 12, 082702(2005).

    [40] W.Kohn, L. J.Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133-A1138(1965).

    [41] P.Hohenberg, W.Kohn. Inhomogeneous electron gas. Phys. Rev., 136, B864-B871(1964).

    [42] N.de Koker. Melting of cubic boron nitride at extreme pressures. J. Phys.: Condens.Matter, 24, 055401(2012).

    [43] F. P.Bundy, F. R.Corrigan. Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures. J. Chem. Phys., 63, 3812-3820(1975).

    [44] V. L.Solozhenko. Boron nitride phase diagram. State of the art. High Pressure Res., 13, 199-214(1995).

    [45] S.Baroni, N.Bonini, M.Calandra, R.Car, P.Giannozziet?al.. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys, Condens. Matter, 21, 395502(2009).

    [46] J. P.Perdew, Y.Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45, 13244-13249(1992).

    [47] N. A. W.Holzwarth, G. E.Matthews, A. R.Tackett. A projector augmented wave (PAW) code for electronic structure calculations, Part I: Atompaw for generating atom-centered functions. Comput. Phys. Commun., 135, 329-347(2001).

    [48] P. E.Blöchl. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979(1994).

    [49] X. T.He, W.Kang, H.Wang, P.Zhang, S.Zhang. Extended application of Kohn–Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas. Phys. Plasmas, 23, 042707(2016).

    [50] C.Gao, X. T.He, W.Kang, C.Wang, P.Zhang, S.Zhang. Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure. Phys. Rev. B, 94, 205115(2016).

    [51] C.Gao, X.Liu, C.Wang, S.Zhang, X.Zhanget?al.. Equations of state of poly-α-methylstyrene and polystyrene: First-principles calculations versus precision measurements. Phys. Rev. B, 103, 174111(2021).

    [52] C.Gao, X. T.He, W.Kang, X.Liu, P.Zhang, S.Zhang. Consistent wide-range equation of state of silicon by a unified first-principles method. Phys. Rev. B, 107, 165150(2023).

    [53] J.Dai, Y.Hou, D.Kang, Q.Zeng. Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region. Matter Radiat. Extremes, 5, 055401(2020).

    [54] J. Y.Dai, Y.Hou, D.Kang, H. Y.Sun. Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics. Matter Radiat. Extremes, 2, 287-295(2017).

    [55] X.Duan, L.Sun, Z.Wang, Q.Ye, C.Zhang et al. A method for impedance-match experiments with unsteady shock loading, (unpublished)(2024).

    [56] P. M.Celliers, G. W.Collins, J. H.Eggert, D. G.Hicks. Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al. J. Appl. Phys., 98, 113529(2005).

    [57] M. A.Barrios, L. X.Benedict, T. R.Boehly, P. M.Celliers, S.Hamelet?al.. Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements. Phys. Rev. B, 86, 094113(2012).

    [58] D. K.Bradley, P. M.Celliers, J. H.Eggert, D. G.Hicks, R. S.McWilliamset?al.. Nat. Phys., 6, 40-43(2010).

    [59] S.Dyachkov, K.Katagiri, S.Makarov, H.Nakamura, T.Pikuzet?al.. Direct imaging of shock wave splitting in diamond at Mbar pressure. Matter Radiat. Extremes, 8, 066601(2023).

    Huan Zhang, Yutong Yang, Weimin Yang, Zanyang Guan, Xiaoxi Duan, Mengsheng Yang, Yonggang Liu, Jingxiang Shen, Katarzyna Batani, Diluka Singappuli, Ke Lan, Yongsheng Li, Wenyi Huo, Hao Liu, Yulong Li, Dong Yang, Sanwei Li, Zhebin Wang, Jiamin Yang, Zongqing Zhao, Weiyan Zhang, Liang Sun, Wei Kang, Dimitri Batani. Equation of state for boron nitride along the principal Hugoniot to 16 Mbar[J]. Matter and Radiation at Extremes, 2024, 9(5): 057403
    Download Citation