• Chinese Optics Letters
  • Vol. 21, Issue 5, 050602 (2023)
Hongyu Huang, Zhenming Yu*, Liang Shu, Kaixuan Sun, Feifei Yin, and Kun Xu
Author Affiliations
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/COL202321.050602 Cite this Article Set citation alerts
    Hongyu Huang, Zhenming Yu, Liang Shu, Kaixuan Sun, Feifei Yin, Kun Xu. Low-resolution optical transmission using joint shaping technique of signal probability and quantization noise[J]. Chinese Optics Letters, 2023, 21(5): 050602 Copy Citation Text show less
    References

    [1] L. Zhao, Y. Hao, L. Chen, W. Liu, M. Jin, Y. Wu, J. Tao, K. Jie, H. Liu. High-accuracy mode recognition method in orbital angular momentum optical communication system. Chin. Opt. Lett., 20, 020601(2022).

    [2] Q. Wu, Y. Zhu, Z. Cheng, L. Yin, W. Hu. Spectrally sliced heterodyne coherent receiver with halved electrical bandwidth. Chin. Opt. Lett., 20, 090601(2022).

    [3] D. Rafique, A. Napoli, S. Calabro, B. Spinnler. Digital preemphasis in optical communication systems: on the DAC requirements for terabit transmission applications. J. Light. Technol., 32, 3247(2014).

    [4] Y. Yoffe, E. Wohlgemuth, D. Sadot. Digitally enhanced DAC: low-resolution digital pre-compensation for high speed optical links. Optical Fiber Communication Conference (OFC), 1(2018).

    [5] Y. Yoffe, E. Wohlgemuth, D. Sadot. Performance optimization of high speed DACs using DSP. J. Light. Technol., 38, 3096(2020).

    [6] Y. Yoffe, E. Wohlgemuth, D. Sadot. Low resolution pre-compensation for DCI based on dynamic quantization. Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), SpM2G.3(2018).

    [7] Y. Yoffe, G. Khanna, E. Wohlgemuth, E. Man, B. Spinnler, N. Hanik, A. Napoli, D. Sadot. Low-resolution digital pre-compensation enabled by digital resolution enhancer. J. Light. Technol., 37, 1543(2019).

    [8] I. Galton. An analysis of quantization noise in delta sigma modulation and its application to parallel delta sigma modulation(1992).

    [9] K. Bai, Z. Luo, D. Zou, W. Wang, Q. Sui, X. Tang, F. Li, Z. Li. Quantization noise suppression with noise-shaping technique in DMT-modulated IM/DD optical interconnects utilizing low-resolution DAC. Optical Fiber Communications Conference and Exhibition (OFC), W6A.19(2021).

    [10] L. Shu, Z. Yu, K. Sun, Z. Wan, H. Huang, K. Xu. Error-feedback noise shaping for low-resolution high-speed IM/DD and coherent transmission systems. Optical Fiber Communications Conference and Exhibition (OFC), W7F.5(2021).

    [11] W. A. Ling. Shaping quantization noise and clipping distortion in direct-detection discrete multitone. J. Light. Technol., 32, 1750(2014).

    [12] L. Shu, Z. Yu, K. Sun, H. Huang, Z. Wan, K. Xu. Performance investigation of error-feedback noise shaping in low-resolution high-speed IM/DD and coherent transmission systems. J. Light. Technol., 40, 3669(2022).

    [13] H. Huang, Z. Yu, L. Shu, K. Sun, Q. Yin, K. Xu. Joint shaping technique of signal probability and quantization noise for coherent transmission systems. Asia Communications and Photonics Conference (ACP), T4A.70(2021).

    [14] K. Sayood, J. C. Borkenhagen. Use of residual redundancy in the design of joint source/channel coders. IEEE Trans. Commun. Technol., 39, 838(1991).

    [15] J. O’Neal. Signal-to-quantizing-noise ratios for differential PCM. IEEE Trans. Commun. Technol., 19, 568(1971).

    [16] F. R. Kschischang, S. Pasupathy. Optimal nonuniform signaling for Gaussian channels. IEEE Trans. Inf. Theory, 39, 913(1993).

    [17] J. Renner, T. Fehenberger, M. P. Yankov, F. D. Ros, S. Forchhammer, G. Böcherer, N. Hanik. Experimental comparison of probabilistic shaping methods for unrepeated fiber transmission. J. Light. Technol., 35, 4871(2017).

    [18] A. Ghazisaeidi, I. F. de J. Ruiz, R. Rios-Muller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, J. Renaudier. 65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM. 42nd European Conference on Optical Communication, 1(2016).

    [19] J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. J. Winzer, S. Grubb. Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM. J. Light. Technol., 36, 103(2018).

    [20] S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, P. Winzer. High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs. 42nd European Conference on Optical Communication, 1(2016).

    [21] X. Han, Y. Yue, Z. Qu, R. Holmes, I. B. Djordjevic. ADC/DAC resolution tolerance improvement by implementing probabilistic shaping distribution in PAM and QAM modulation schemes. Proc. SPIE, 11712, 117120N(2021).

    [22] M. Abu-Romoh, T. T. Nguyen, Y. Yoffe, I. Phillips, W. Forysiak. Numerical study on the combination of probabilistic shaping and digital resolution enhancer for high baud rate optical communications. European Conference on Optical Communications (ECOC), 1(2020).

    [23] H. Spang, P. Schultheiss. Reduction of quantizing noise by use of feedback. IRE Trans. Commun. Syst., 10, 373(1962).

    [24] L. Sun, J. Du, C. Wang, Z. Li, K. Xu, Z. He. Frequency-resolved adaptive probabilistic shaping for DMT-modulated IM-DD optical interconnects. Opt. Express, 27, 12241(2019).

    [25] T. Fehenberger, A. Alvarado, G. Böcherer, N. Hanik. On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel. J. Light. Technol., 34, 5063(2016).

    [26] P. Schulte, G. Böcherer. Constant composition distribution matching. IEEE Trans. Inf. Theory., 62, 430(2016).

    [27] A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, F. Forghieri. Statistical characterization of PM-QPSK signals after propagation in uncompensated fiber links. 36th European Conference and Exhibition on Optical Communication, 1(2010).

    Data from CrossRef

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [1] Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, Nan Chi.

    [2] Xiangyong Dong, Zhenming Yu, Hongyu Huang, Kaixuan Sun, Kun Xu.

    [2] Xiangyong Dong, Zhenming Yu, Hongyu Huang, Kaixuan Sun, Kun Xu.

    [2] Xiangyong Dong, Zhenming Yu, Hongyu Huang, Kaixuan Sun, Kun Xu.

    [2] Xiangyong Dong, Zhenming Yu, Hongyu Huang, Kaixuan Sun, Kun Xu.

    [2] Xiangyong Dong, Zhenming Yu, Hongyu Huang, Kaixuan Sun, Kun Xu.

    Hongyu Huang, Zhenming Yu, Liang Shu, Kaixuan Sun, Feifei Yin, Kun Xu. Low-resolution optical transmission using joint shaping technique of signal probability and quantization noise[J]. Chinese Optics Letters, 2023, 21(5): 050602
    Download Citation