[1] J C JUAREZ, H F TAYLOR. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Applied Optics, 46, 1968-1971(2007).
[2] Z G QIN, L CHEN, X Y BAO. Continuous wavelet transform for non-stationary vibration detection with phase-OTDR, 8421, 8421-0(2012).
[3] J C JUAREZ, E W MAIER, K N CHOI et al. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 23, 2081-2087(2005).
[4] J C JUAREZ, H F TAYLOR. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system. Optics Letters, 30, 3284-3286(2005).
[5] Z G QIN, L CHEN, X Y BAO. Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics Technology Letters, 24, 542-544(2012).
[6] K N CHOI, H F TAYLOR. Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry. IEEE Photonics Technology Letters, 15, 386-388(2003).
[7] Y J RAO, J LUO, Z L RAN et al. [C](2009).
[8] H F MARTINS, S MARTÍN-LÓPEZ, P CORREDERA et al. Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over>100 km. Journal of Lightwave Technology, 32, 1510-1518(2014).
[9] F PENG, H WU, X H JIA et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express, 22, 13804-13810(2014).
[10] H F MARTINS, S MARTIN-LOPEZ, M L FILOGRANO et al. Comparison of the use of first and second-order Raman amplification to assist a phase-sensitive optical time domain reflectometer in distributed vibration sensing over 125 km, 9157, 91576K(2014).
[11] Y L LU, T ZHU, L CHEN et al. Distributed vibration sensor based on coherent detection of phase-OTDR. Journal of Lightwave Technology, 28, 3243-3249(2010).
[12] Z N WANG, J LI, M Q FAN et al. Phase-sensitive optical time-domain reflectometry with Brillouin amplification. Optics Letters, 39, 4313-4316(2014).
[13] Z N WANG, J J ZENG, J LI et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters, 39, 5866-5869(2014).
[14] Z Q PAN, K Z LIANG, Q YE et al. Phase-sensitive OTDR system based on digital coherent detection, 1-6(2011).
[15] H J HE, L Y SHAO, B LUO et al. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing. Optics Express, 24, 4842-4855(2016).
[16] Q HE, T ZHU, X H XIAO et al. All fiber distributed vibration sensing using modulated time-difference pulses. IEEE Photonics Technology Letters, 25, 1955-1957(2013).
[17] Y Y SHAN, J Y DONG, J ZENG et al. A broadband distributed vibration sensing system assisted by a distributed feedback interferometer. IEEE Photonics Journal, 10, 1-10(2018).
[18] T ZHU, Q HE, X H XIAO et al. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Optics Express, 21, 2953-2963(2013).
[19] 19曲洪权, 夏雨, 毕福昆. 一种基于改进型SVM算法的光纤入侵信号识别研究[J]. 北方工业大学学报, 2017, 29(2): 33-38. doi: 10.3969/j.issn.1001-5477.2017.02.006QUH Q, XIAY, BIF K. An improved SVM method to recognize harmful intrusion signal for optical fiber pre-warning system[J]. Journal of North China University of Technology, 2017, 29(2): 33-38.(in Chinese). doi: 10.3969/j.issn.1001-5477.2017.02.006
[20] H J WU, S K XIAO, X Y LI et al. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR). Journal of Lightwave Technology, 33, 3156-3162(2015).
[21] Y QIAN, H J WU, W ZHANG et al. Feature extraction with WD and WPD in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring(2016).
[22] J TEJEDOR, J MACIAS-GUARASA, H MARTINS et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats. Sensors, 17, 355(2017).
[23] 23徐铖晋. 分布式光纤传感系统的信号处理技术研究[D]. 杭州: 浙江大学, 2017.XUCH J. Research on Signal Processing Technology of Distributed Optical Fiber Sensing System[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
[24] 24张俊楠, 娄淑琴, 梁生. 基于SVM算法的φ-OTDR分布式光纤扰动传感系统模式识别研究[J]. 红外与激光工程, 2017, 46(4): 0422003. doi: 10.3788/irla201746.0422003ZHANGJ N, LOUSH Q, LIANGSH. Study of pattern recognition based on SVM algorithm for φ-OTDR distributed optical fiber disturbance sensing system[J]. Infrared and Laser Engineering, 2017, 46(4): 0422003.(in Chinese). doi: 10.3788/irla201746.0422003
[25] 25付群健. 分布式光纤振动传感系统模式识别方法研究[D]. 长春: 吉林大学, 2019. doi: 10.1117/12.2548132FUQ J. Research on Pattern Recognition Method of Distributed Optical Fiber Vibration Sensing System[D]. Changchun: Jilin University, 2019. (in Chinese). doi: 10.1117/12.2548132
[26] 26张伟. 基于分布式光纤振动传感器的管道监测信号处理方法[D]. 成都: 电子科技大学, 2017.ZHANGW. Methods of Pipeline Monitoring Signal Processing Based on Distributed Optical Fiber Vibration Sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2017. (in Chinese)
[27] H Z JIA, S LIANG, S Q LOU et al. A $k$ -nearest neighbor algorithm-based near category support vector machine method for event identification of phi-OTDR. IEEE Sensors Journal, 19, 3683-3689(2019).
[28] 28姚媛媛. 分布式光纤传感系统的振动信号识别研究[D]. 北京: 北京交通大学, 2020.YAOY Y. Research on Vibration Signal Recognition of Distributed Optical Fiber Sensing System[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
[29] Q SUN, H FENG, X YAN et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction. Sensors (Basel, Switzerland), 15, 15179-15197(2015).
[30] Y WANG, P F WANG, K DING et al. Pattern recognition using relevant vector machine in optical fiber vibration sensing system. IEEE Access, 7, 5886-5895(2019).
[31] C J XU, J J GUAN, M BAO et al. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR. Optical Engineering, 57, 1(2018).
[32] F JIANG, H L LI, Z H ZHANG et al. An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN, 1061, 1061804(2018).
[33] Y SHI, Y Y WANG, L ZHAO et al. An event recognition method for Φ-OTDR sensing system based on deep learning. Sensors, 19, 3421(2019).
[34] J P CHEN, H J WU, X R LIU et al. A real-time distributed deep learning approach for intelligent event recognition in long distance pipeline monitoring with DOFS, 290-296(2018).
[35] 35吴俊, 管鲁阳, 鲍明, 等. 基于多尺度一维卷积神经网络的光纤振动事件识别[J]. 光电工程, 2019, 46(5): 79-86.WUJ, GUANL Y, BAOM, et al. Vibration events recognition of optical fiber based on multi-scale 1-D CNN[J]. Opto-Electronic Engineering, 2019, 46(5): 79-86.(in Chinese)
[36] 36于淼. 基于双重同源外差相干检测的Φ-OTDR系统的研究及应用[D]. 长春: 吉林大学, 2017. doi: 10.1364/ao.56.004058YUM. Research and Application of Phase-sensitive Optical Time-domain Reflectometric System Based on Single-source Dual Heterodyne Detection Scheme[D]. Changchun: Jilin University, 2017. (in Chinese). doi: 10.1364/ao.56.004058
[37] C J XU, J J GUAN, M BAO et al. Pattern recognition based on enhanced multifeature parameters for vibration events in φ-OTDR distributed optical fiber sensing system. Microwave and Optical Technology Letters, 59, 3134-3141(2017).
[38] X CHEN, C J XU. Disturbance pattern recognition based on an ALSTM in a long-distance φ-OTDR sensing system. Microwave and Optical Technology Letters, 62, 168-175(2020).
[39] Z G QIN, L CHEN, X Y BAO. Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics Technology Letters, 24, 542-544(2012).
[40] W CHEN, X H MA, Q L MA et al. Denoising method of the Φ-OTDR system based on EMD-PCC. IEEE Sensors Journal, 21, 12113-12118(2021).
[41] S QU, J CHANG, Z H CONG et al. Data compression and SNR enhancement with compressive sensing method in phase-sensitive OTDR. Optics Communications, 433, 97-103(2019).
[42] T ZHU, X H XIAO, Q HE et al. Enhancement of SNR and spatial resolution in phi-OTDR system by using two-dimensional edge detection method. Journal of Lightwave Technology, 31, 2851-2856(2013).
[43] Y WANG, B Q JIN, Y C WANG et al. Real-time distributed vibration monitoring system using $\Phi$ -OTDR. IEEE Sensors Journal, 17, 1333-1341(2017).
[44] H J HE, L Y SHAO, H C LI et al. SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm. IEEE Photonics Journal, 9, 1-10(2017).
[45] İ ÖLÇER, A ÖNCÜ. Adaptive temporal matched filtering for noise suppression in fiber optic distributed acoustic sensing. Sensors, 17, 1288(2017).
[46] S LIEHR, C BORCHARDT, S MÜNZENBERGER. Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers. Optics Express, 28, 39311-39325(2020).
[47] S BOLL. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27, 113-120(1979).
[48] J A TROPP, A C GILBERT. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 4655-4666(2007).
[49] ROBERTS, G L, ROBERTS, G L. Machine Perception of Three-dimensional Solids(1965).
[50] M ELAD. On the origin of the bilateral filter and ways to improve it. IEEE Transactions on Image Processing, 11, 1141-1151(2002).
[51] I E SOBEL. Camera Models and Machine Perception(1970).
[52] PREWITT. Object enhancement and extraction. Picture Processing and Psychopictorics(1971).
[53] Q D ZHU, L Q JING, R S BI. Exploration and improvement of Ostu threshold segmentation algorithm, 6183-6188(2010).
[54] M ZHANG, B K GUNTURK. Multiresolution bilateral filtering for image denoising. IEEE Transactions on Image Processing, 17, 2324-2333(2008).
[55] L Y SHAO, S Q LIU, S BANDYOPADHYAY et al. Data-driven distributed optical vibration sensors: a review. IEEE Sensors Journal, 20, 6224-6239(2019).
[56] J TEJEDOR, J MACIAS-GUARASA, H F MARTINS et al. Towards detection of pipeline integrity threats using a smart fiber optic surveillance system: PIT-STOP project blind field test results(2017).
[57] H Z JIA, S Q LOU, S LIANG et al. Event identification by F-ELM model for phi-OTDR fiber-optic distributed disturbance sensor. IEEE Sensors Journal, 20, 1297-1305(2020).
[58] X WANG, Y LIU, S LIANG et al. Event identification based on random forest classifier for Φ-OTDR fiber-optic distributed disturbance sensor. Infrared Physics & Technology, 97, 319-325(2019).
[59] J WANG, Y Z HU, Y C SHAO. The digging signal identification by the random forest algorithm in the phase-OTDR technology. IOP Conference Series: Materials Science and Engineering, 394(2018).
[60] M J ZHANG, Y C LI, J CHEN et al. Event detection method comparison for distributed acoustic sensors using φ-OTDR. Optical Fiber Technology, 52, 101980(2019).
[61] Z D WANG, S Q LOU, S LIANG et al. Multi-class disturbance events recognition based on EMD and XGBoost in φ-OTDR. IEEE Access, 8, 63551-63558(2020).
[62] D CREMERS, M ROUSSON, R DERICHE. A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. International Journal of Computer Vision, 72, 195-215(2007).
[63] B SANKUR. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13, 146-168(2004).
[64] A BIANCO, G BOENTE, A M PIRES et al. Robust discrimination under a hierarchy on the scatter matrices. Journal of Multivariate Analysis, 99, 1332-1357(2008).
[65] L H JIANG, X M LIU, R Y YANG. Application of the HHT method to the airport fiber fence warning, 1337-1340(2011).
[66] M E TIPPING. Sparse Bayesian learning and relevance vector machine. Journal of Machine Learning Research, 1, 211-244(2001).
[67] 67赵发林, 张涛, 李康. 基于遗传算法的随机森林模型在特征基因筛选中的应用[J]. 中国卫生统计, 2016, 33(4): 559-562, 566.ZHAOF L, ZHANGT, LIK. An optimized random forest based on genetic algorithm and its application to feature selection for gene data[J]. Chinese Journal of Health Statistics, 2016, 33(4): 559-562, 566.(in Chinese)
[68] J H FRIEDMAN. Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29, 1189-1232(2001).
[69] Y LECUN, L BOTTOU, Y BENGIO et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324(1998).
[70] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).
[71] C SZEGEDY, W LIU, Y Q JIA et al. Going deeper with convolutions, 1-9(2015).
[72] K SIMONYAN, A ZISSERMAN. Very Deep Convolutional Networks for Large-scale Image Recongnition. Computer Science(2014).
[73] H L LI, Z H ZHANG, F JIANG et al. An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN, 28, 1061804(2018).
[74] Y SHI, Y Y WANG, L Y WANG et al. Multi-event classification for Φ-OTDR distributed optical fiber sensing system using deep learning and support vector machine. Optik, 221, 165373(2020).
[75] Q SUN, Q J LI, L CHEN et al. Pattern recognition based on pulse scanning imaging and convolutional neural network for vibrational events in Φ-OTDR. Optik, 219, 165205(2020).
[76] S S RUAN, J Q MO, L XU et al. Use AF-CNN for end-to-end fiber vibration signal recognition. IEEE Access, 9, 6713-6720(2021).
[77] Z Q HUO, Y G LIU et al. Robust intrusion events recognition methodology for distributed optical fiber sensing perimeter security system. IEEE Transactions on Instrumentation and Measurement, 70, 1-9(2021).
[78] C GIRAUD-CARRIER, R VILALTA, P BRAZDIL. Introduction to the special issue on meta-learning. Machine Learning, 54, 187-193(2004).
[79] S HOCHREITER, J SCHMIDHUBER. Long short-term memory. Neural Computation, 9, 1735-1780(1997).
[80] Y BAI, J C XING, F XIE et al. Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning. Optical Fiber Technology, 53, 102060(2019).
[81] Z Q LI, J W ZHANG, M N WANG et al. Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection. Optics Express, 28, 2925-2938(2020).
[82] Z Q LI, J W ZHANG, M N WANG et al. An anti-noise ϕ-OTDR based distributed acoustic sensing system for high-speed railway intrusion detection. Laser Physics, 30(2020).
[83] Z D WANG, S Q LOU, X WANG et al. Multi-branch long short-time memory convolution neural network for event identification in fiber-optic distributed disturbance sensor based on φ-OTDR. Infrared Physics & Technology, 109, 103414(2020).
[84] H J WU, M R YANG, S Q YANG et al. A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network. IEEE Access, 8, 119448-119457(2020).