• Semiconductor Optoelectronics
  • Vol. 43, Issue 2, 347 (2022)
LIU Zhaolun1,2,*, SUI Yanru1,2, GUO Xiaojie1,2, YUN Wei1,2, and LIU Ziyue1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2021112404 Cite this Article
    LIU Zhaolun, SUI Yanru, GUO Xiaojie, YUN Wei, LIU Ziyue. A Spiral Photonic Crystal Fiber Capable of Transmitting Orbital Angular Momentum[J]. Semiconductor Optoelectronics, 2022, 43(2): 347 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys. Rev. A, 1992, 45(11): 8185-8189.

    [2] Bozinovic N, Yue Yang, Ren Yongxiong, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

    [3] Hu Ziang, Huang Yuqi, Luo Aiping, et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes[J]. Opt. Express, 2016, 24(15): 17285-17291.

    [5] Ellis D, Zhao Jian, Cotter D. Approaching the non-linear Shannon limit[J]. J. Lightwave Technol., 2009, 28(4): 423-433.

    [7] Yue Yang, Zhang Lin, Yan Yan, et al. Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber[J]. Opt. Lett., 2012, 37(11): 1889-1891.

    [8] Zhang Hu, Zhang Wenbo, Xi Lixia, et al. Design of a circular photonic crystal fiber supporting OAM modes[C]// Asia Communications and Photonics Conf.: Optical Society of America, 2015: ASu2A-54.

    [9] Tian Wei, Zhang Hu, Zhang Xiaoguang, et al. A circular photonic crystal fiber supporting 26 OAM modes[J]. Opt. Fiber Technol., 2016, 30: 184-189.

    [10] Nandam A, Shin W. Spiral photonic crystal fiber structure for supporting orbital angular momentum modes[J]. Optik, 2018, 169: 361-367.

    [11] Israk M F, Razzak M A, Ahmed K, et al. Ring-based coil structure photonic crystal fiber for transmission of orbital angular momentum with large bandwidth: Outline, investigation and analysis[J]. Opt. Commun., 2020, 473: 126003.

    [13] Dashti P Z, Alhassen F, Lee H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber[J]. Phys. Rev. Lett., 2006, 96(4): 043604.

    [14] Pakarzadeh H, Sharif V. Control of orbital angular momentum of light in optofluidic infiltrated circular photonic crystal fibers[J]. Opt. Commun., 2019, 438: 18-24.

    [17] Ashok N, Lee Y L, Shin W. Chalcogenide waveguide structure for dispersion in mid-infrared wavelength[J]. Jap. J. Appl. Phys., 2017, 56(3): 032501.

    [18] Nandam A, Jung M, Lee Y L, et al. Reverse ridge silicon strip waveguide and silica slot waveguide structure for the dispersion at 1550nm[J]. IEEE Photonics J., 2016, 8(6): 7102609.

    [19] Mann V, Askok N, Rastogi V. Coupled strip-slot waveguide design for dispersion compensation[J]. Opt. Quant. Electron., 2015, 47(9): 3161-3169.

    [21] Islam M, Hossain M A, Haque F. A comparative analysis between low loss kagome structured THz hollow core and porous core PCF[J]. AIUB J. Sci. Eng., 2017, 16(2): 95-100.

    [22] Xu Huizhen, Wu Jian, Xu Kun, et al. Ultra-flattened chromatic dispersion control for circular photonic crystal fibers[J]. J. Opt., 2011, 13(5): 994-1001.

    LIU Zhaolun, SUI Yanru, GUO Xiaojie, YUN Wei, LIU Ziyue. A Spiral Photonic Crystal Fiber Capable of Transmitting Orbital Angular Momentum[J]. Semiconductor Optoelectronics, 2022, 43(2): 347
    Download Citation