• Chinese Optics Letters
  • Vol. 22, Issue 11, 111903 (2024)
Haijiao Xu1, Wei Lin1, Xu Hu1, Yang Yang1..., Zongda Li2, Yiqing Xu2, Yuankai Guo1, Dongdan Chen3, Xiaoming Wei1,3,* and Zhongmin Yang1,3,4,**|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • 2Department of Physics, University of Auckland, Auckland 1010, New Zealand
  • 3School of Materials Science and Engineering, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, China
  • 4Research Institute of Future Technology, South China Normal University, Guangzhou 510006, China
  • show less
    DOI: 10.3788/COL202422.111903 Cite this Article Set citation alerts
    Haijiao Xu, Wei Lin, Xu Hu, Yang Yang, Zongda Li, Yiqing Xu, Yuankai Guo, Dongdan Chen, Xiaoming Wei, Zhongmin Yang, "Real-time birth-to-annihilation dynamics of dissipative Kerr cavity soliton," Chin. Opt. Lett. 22, 111903 (2024) Copy Citation Text show less
    References

    [1] F. Leo, S. Coen, P. Kockaert et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 4, 471(2010).

    [2] P. Marin-Palomo, J. N. Kemal, M. Karpov et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

    [3] E. Obrzud, M. Rainer, A. Harutyunyan et al. A microphotonic astrocomb. Nat. Photonics, 13, 31(2019).

    [4] J. Liu, E. Lucas, A. S. Raja et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486(2020).

    [5] Z. L. Newman, V. Maurice, T. Drake et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680(2019).

    [6] M. G. Suh, Q. F. Yang, K. Y. Yang et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).

    [7] P. Trocha, M. Karpov, D. Ganin et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887(2018).

    [8] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884(2018).

    [9] Z. Sun, Y. Li, B. Bai et al. “Silicon nitride-based Kerr frequency combs and applications in metrology. Adv. Photonics, 4, 064001(2022).

    [10] J. K. Jang, M. Erkintalo, S. Coen et al. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun., 6, 7370(2015).

    [11] W. Chen, B. Garbin, A. U. Nielsen et al. Experimental observations of breathing Kerr temporal cavity solitons at large detunings. Opt. Lett., 43, 3674(2018).

    [12] T. Herr, V. Brasch, J. D. Jost et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145(2014).

    [13] S. Coen, M. Erkintalo. Universal scaling laws of Kerr frequency combs. Opt. Lett., 38, 1790(2013).

    [14] H. Shu, L. Chang, C. Lao et al. Submilliwatt, widely tunable coherent microcomb generation with feedback-free operation. Adv. Photonics, 5, 036007(2023).

    [15] V. Brasch, M. Geiselmann, T. Herr et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357(2016).

    [16] M. Karpov, H. Guo, A. Kordts et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 116, 103902(2016).

    [17] Q. F. Yang, X. Yi, K. Y. Yang et al. Stokes solitons in optical microcavities. Nat. Phys., 13, 53(2017).

    [18] Y. Xu, A. Sharples, J. Fatome et al. Frequency comb generation in a pulse-pumped normal dispersion Kerr mini-resonator. Opt. Lett., 46, 512(2021).

    [19] Z. Li, Y. Xu, S. Shamailov et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses. Nat. Photonics, 18, 46(2024).

    [20] D. C. Cole, E. S. Lamb, P. Del’Haye et al. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671(2017).

    [21] Z. Li, Y. Xu, S. Coen et al. Experimental observations of bright dissipative cavity solitons and their collapsed snaking in a Kerr resonator with normal dispersion driving. Optica, 7, 1195(2020).

    [22] F. Copie, M. T. M. Woodley, L. D. Bino et al. Interplay of polarization and time-reversal symmetry breaking in synchronously pumped ring resonators. Phys. Rev. Lett., 122, 013905(2019).

    [23] G. Xu, A. U. Nielsen, B. Garbin et al. Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator. Nat. Commun., 12, 4023(2021).

    [24] Z. Xiao, T. Li, M. Cai et al. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl., 12, 33(2023).

    [25] M. Anderson, Y. Wang, F. Leo et al. Coexistence of multiple nonlinear states in a tristable passive Kerr resonator. Phys. Rev. X, 7, 031031(2017).

    [26] A. U. Nielsen, Y. Xu, C. Todd et al. Nonlinear localization of dissipative modulation instability. Phys. Rev. Lett., 127, 123901(2021).

    [27] F. Copie, M. Conforti, A. Kudlinski et al. Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity. Opt. Lett., 42, 435(2017).

    [28] F. Copie, M. Conforti, A. Kudlinski et al. Modulation instability in the weak dispersion regime of a dispersion modulated passive fiber-ring cavity. Opt. Express, 25, 11283(2017).

    [29] Z. Li, Y. Xu, C. Todd et al. Observations of existence and instability dynamics of near-zero-dispersion temporal Kerr cavity solitons. Phys. Rev. Res., 3, 043207(2021).

    [30] M. Anderson, F. Leo, S. Coen et al. Observations of spatiotemporal instabilities of temporal cavity solitons. Optica, 3, 1071(2016).

    [31] M. A. Foster, R. Salem, D. F. Geraghty et al. Silicon-chip-based ultrafast optical oscilloscope. Nature, 456, 81(2008).

    [32] P. Ryczkowski, M. Närhi, C. Billet et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221(2018).

    [33] Y. Song, Z. Wang, C. Wang et al. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photonics, 2, 024001(2020).

    [34] A. Tikan, S. Bielawski, C. Szwaj et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography. Nat. Photonics, 12, 228(2018).

    [35] T. Jannson. Real-time Fourier transformation in dispersive optical fibers. Opt. Lett., 8, 232(1983).

    [36] L. Sader, S. Bose, A. K. Kashi et al. Single-photon level dispersive Fourier transform: utrasensitive characterization of noise-driven nonlinear dynamics. ACS Photonics, 10, 3915(2023).

    [37] X. Liu, Y. Cui. Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics, 1, 1(2019).

    [38] N. K. Fontaine, R. P. Scott, L. Zhou et al. Real-time full-field arbitrary optical waveform measurement. Nat. Photonics, 4, 248(2010).

    [39] B. Li, S. W. Huang, Y. Li et al. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun., 8, 61(2017).

    [40] A. Cutrona, V. Cecconi, P. H. Hanzard et al. Nonlocal bonding of a soliton and a blue-detuned state in a microcomb laser. Commun. Phys., 6, 259(2023).

    [41] X. Yi, Q. F. Yang, K. Y. Yang et al. Imaging soliton dynamics in optical microcavities. Nat. Commun., 9, 3565(2018).

    [42] F. Bessin, F. Copie, M. Conforti et al. Real-time characterization of period-doubling dynamics in uniform and dispersion oscillating fiber ring cavities. Phys. Rev. X, 9, 041030(2019).

    [43] S. Coen, M. Haelterman, P. Emplit et al. Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator. J. Opt. Soc. Am. B, 15, 2283(1998).

    [44] A. U. Nielsen, B. Garbin, S. Coen et al. Invited article: emission of intense resonant radiation by dispersion-managed Kerr cavity solitons. APL Photonics, 3, 120804(2018).

    [45] D. R. Solli, J. Chou, B. Jalali. Amplified wavelength–time transformation for real-time spectroscopy. Nat. Photonics, 2, 48(2008).

    [46] F. Leo, L. Gelens, P. Emplit et al. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express, 21, 9180(2013).

    [47] W. Wang, L. Wang, W. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, 1(2020).

    [48] K. Luo, J. K. Jang, S. Coen et al. Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator. Opt. Lett., 40, 3735(2015).

    [49] G. P. Agrawal. Nonlinear Fiber Optics(2007).

    [50] K. Luo, J. K. Jang, M. Erkintalo et al. Real-time spectral evolution of breathing temporal cavity solitons. European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference(2015).

    [51] C. Bao, J. A. Jaramillo-Villegas, Y. Xuan et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [52] J. Peng, S. Boscolo, Z. Zhao et al. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv., 5, eaax1110(2019).

    [53] T. Xian, L. Zhan, W. Wang et al. Subharmonic entrainment breather solitons in ultrafast lasers. Phys. Rev. Lett., 125, 163901(2020).

    [54] J. Peng, Z. Zhao, S. Boscolo et al. Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev., 15, 2000132(2021).

    [55] Y. Guo, W. Lin, W. Wang et al. Unveiling the complexity of spatiotemporal soliton molecules in real time. Nat. Commun., 14, 2029(2023).

    Haijiao Xu, Wei Lin, Xu Hu, Yang Yang, Zongda Li, Yiqing Xu, Yuankai Guo, Dongdan Chen, Xiaoming Wei, Zhongmin Yang, "Real-time birth-to-annihilation dynamics of dissipative Kerr cavity soliton," Chin. Opt. Lett. 22, 111903 (2024)
    Download Citation