• Chinese Journal of Lasers
  • Vol. 44, Issue 10, 1010007 (2017)
Cheng Xiaojun1、*, Guo Wang1, Li Quan1, and Cheng Xiaolong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201744.1010007 Cite this Article Set citation alerts
    Cheng Xiaojun, Guo Wang, Li Quan, Cheng Xiaolong. Joint Classification Method for Terrestrial LiDAR Point Cloud Based on Intensity and Color Information[J]. Chinese Journal of Lasers, 2017, 44(10): 1010007 Copy Citation Text show less
    References

    [1] Shan J, Toth C K[M]. Topographic laser ranging and scanning: Principles and processing, 215-234(2008).

    [2] Hackel T, Wegner J D, Schindler K. Fast semantic segmentation of 3D point clouds with strongly varying density[J]. ISPRS Annals of Photogrammetry Remote Sensing & Spatial Information Sciences, 3, 177-184(2016). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016ISPAnIII3..177H&link_type=ABSTRACT

    [3] Yang Bisheng, Dong Zhen, Wei Zheng et al. Extracting complex building facades from mobile laser scanning data[J]. Acta Geodaetica et Cartographica Sinica, 42, 411-417(2013).

    [4] Ramiya A M, Nidamanuri R R, Krishnan R. Semantic labelling of urban point cloud data[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 907(2014). http://www.researchgate.net/publication/275967967_Semantic_labelling_of_urban_point_cloud_data

    [5] Kumari B, Sreevalsan-Nair J. An interactive visual analytic tool for semantic classification of 3D urban LiDAR point cloud[C]. Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, 73(2015).

    [6] Zhang X, Du S, Wang Y C. Semantic classification of heterogeneous urban scenes using intrascene feature similarity and interscene semantic dependency[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 8, 2005-2014(2015). http://ieeexplore.ieee.org/document/7073595/

    [7] Song J H, Han S H, Yu K et al. Assessing the possibility of land-cover classification using lidar intensity data[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34, 259-262(2012). http://www.researchgate.net/publication/242042288_Assessing_the_Possibility_of_Land-cover_Classication_Using_Lidar_Intensity_Data

    [8] Charaniya A P, Manduchi R, Lodha S K. Supervised parametric classification of aerial lidar data[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshop, 30(2004).

    [9] Coren F, Sterzai P. Radiometric correction in laser scanning[J]. International Journal of Remote Sensing, 27, 3097-3104(2006). http://www.tandfonline.com/doi/full/10.1080/01431160500217277

    [10] Soudarissanane S, Lindenbergh R, Menenti M. et al. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 66, 389-399(2011). http://www.sciencedirect.com/science/article/pii/S0924271611000098

    [11] Strom J, Richardson A, Olson E. Graph-based segmentation for colored 3D laser point clouds[C]. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2131-2136(2010).

    [12] Knopf G K. Hierarchical data clustering approach for segmenting colored three-dimensional point clouds of building interiors[J]. Optical Engineering, 50, 249(2011). http://spie.org/Publications/Journal/10.1117/1.3599868

    [13] Matti E K, Nebiker S. Geometry and colour based classification of urban point cloud scenes using a supervised self-organizing map[J]. Photogrammetrie-Fernerkundung-Geoinformation, 2014, 161-173(2014). http://www.ingentaconnect.com/content/schweiz/pfg/2014/00002014/00000003/art00001

    [14] Luo H, Wang C, Wen C et al. Patch-based semantic labeling of road scene using colorized mobile lidar point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 17, 1-12(2016). http://ieeexplore.ieee.org/document/7345561/

    [15] Hug C, Wehr A. Detecting and identifying topographic objects in imaging laser altimeter data[J]. International Archives of Photogrammetry and Remote Sensing, 32, 19-26(1997). http://www.researchgate.net/publication/243782753_Detecting_and_identifying_topographic_objects_in_imaging_laser_altimeter_data

    [16] Pfeifer N, Höfle B, Briese C et al. Analysis of the backscattered energy in terrestrial laser scanning data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1045-1052(2008). http://www.researchgate.net/publication/228582316_Analysis_of_the_backscattered_energy_in_terrestrial_laser_scanning_data

    [17] Jelalian A V. Laser radar systems[C]. EASCON'80, Electronics and Aerospace Systems Conference, 546-554(1980).

    [18] Jutzi B, Gross H. Investigations on surface reflection models for intensity normalization in airborne laser scanning (ALS) data[J]. Photogrammetric Engineering & Remote Sensing, 76, 1051-1060(2010). http://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000009/art00005?crawler=true

    [19] Ding Q, Chen W, King B et al. Combination of overlap-driven adjustment and Phong model for LiDAR intensity correction[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 75, 40-47(2013). http://www.sciencedirect.com/science/article/pii/S0924271612001852

    [20] Joerg P C, Weyermann J, Morsdorf F. et al. Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements[J]. Remote Sensing of Environment, 160, 31-42(2015). http://www.sciencedirect.com/science/article/pii/S0034425714005094

    [21] Kashani A G, Olsen M J, Parrish C E et al. A review of lidar radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration[J]. Sensors, 15, 28099-28128(2015). http://europepmc.org/articles/PMC4701271/

    [22] Tan K, Cheng X. Intensity data correction based on incidence angle and distance for terrestrial laser scanner[J]. Journal of Applied Remote Sensing, 9, 094094(2015). http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2436560&resultClick=1

    [23] Fang Wei, Huang Xianfeng, Zhang Fan et al. Mural image rectification based on correction of laser point cloud intensity[J]. Acta Geodaetica et Cartographica Sinica, 44, 541-547(2015).

    [24] Anttila K, Hakala T, Kaasalainen S et al. Calibrating laser scanner data from snow surfaces: Correction of intensity effects[J]. Cold Regions Science & Technology, 121, 52-59(2015). http://www.researchgate.net/publication/283806537_Calibrating_laser_scanner_data_from_snow_surfaces_Correction_of_intensity_effects

    CLP Journals

    [1] Wang Guo, Xiaojun Cheng. Registration Method for Airborne and Terrestrial Light Detection and Ranging Point Cloud Based on Laser Intensity Classification[J]. Laser & Optoelectronics Progress, 2018, 55(6): 062803

    [2] Chu Jinghui, Wu Zerui, Lü Wei, Li Zhe. Breast Cancer Diagnosis System Based on Transfer Learning and Deep Convolutional Neural Networks[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81001

    [3] Shanxin Zhang, Qiang Fan, Zhiping Zhou. Object Shape Classification Based on Bayesian Optimized Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061011

    [4] Zhenyang Hui, Penggen Cheng, Yunlan Guan, Yunju Nie. Review on Airborne LiDAR Point Cloud Filtering[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060001

    Cheng Xiaojun, Guo Wang, Li Quan, Cheng Xiaolong. Joint Classification Method for Terrestrial LiDAR Point Cloud Based on Intensity and Color Information[J]. Chinese Journal of Lasers, 2017, 44(10): 1010007
    Download Citation